ОФСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

РЕАКЦИЯ КЛЕТОК ВИСОЧНОЙ КОРЫ НЕНАРКОТИЗИРОВАННОЙ КОШКИ НА ЗВУКИ ЧЕЛОВЕЧЕСКОГО ХРАПА

Код статьи
S3034593625030041-1
DOI
10.7868/S3034593625030041
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 39 / Номер выпуска 3
Страницы
38-52
Аннотация
На электрофизиологической установке, созданной Иваном Николаевичем Пигаревым, нам удалось исследовать нейронную активность слуховой коры кошки (локальный потенциал коры, электроэнцефалограмма, импульсация одиночных клеток) в естественном состоянии, регистрируя параллельно важнейшие параметры общего состояния организма (сердцебиение, дыхание, двигательная активность глаз). Рассмотрена импульсная активность одиночных клеток или малых ансамблей нейронов, локализованных в слуховых зонах коры, при воздействии одного сигнала – звука человеческого храпа довольно высокой интенсивности. Значительное число клеток, расположенных в той области слуховой коры, где располагаются клетки с характеристическими частотами в диапазоне 10–14 кГц, отвечали на этот сигнал модуляцией текущей частоты импульсации, хорошо синхронизованной с частотно-временными особенностями храпа. Полученные данные позволяют пересмотреть ряд установившихся постулатов о роли слуховой коры, которые были сформированы на основе экспериментов, проводимых главным образом на наркотизированных объектах.
Ключевые слова
отсутствие наркоза кошка слуховая кора храп нейроны
Дата публикации
01.08.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
58

Библиография

  1. 1. Бибиков Н.Г., Грубник О.Н. Улучшение синхронизации импульсной активности слуховых нейронов лягушки с огибающей звука в процессе долговременной адаптации. Сенсорные системы. 1996. Т.10(1). C. 5–18.
  2. 2. Bibikov N.G., Grubnik O.N. Uluchsheniye sinkhronizatsii impul’snoy aktivnosti slukhovykh neyronov lyagushki s ogibayushchey zvuka v protsesse dolgovremennoy adaptatsii [Improvement of synchronization of impulse activity of auditory neurons of a frog with the envelope of sound in the process of long-term adaptation]. Sensornye sistemy [Sensory systems]. 1996. V. 10(1). P. 5-18. (in Russian).
  3. 3. Бибиков Н.Г., Низамов С.В., Пигарев И.Н. Нейронные реакции коры мозга кошки на звуки, поступающие с фронтального направления (методические аспекты). Труды всероссийской акустической конференции. СПб. Политех-Пресс. 2020. С. 281–284.
  4. 4. Bibikov N.G., Nizamov S.V., Pigarev I.N. Neyronnyye reaktsii kory mozga koshki na zvuki, postupayushchiye s frontal’nogo napravleniya (metodicheskiye aspekty) [Neural responses of the cat’s cerebral cortex to sounds coming from the frontal direction (methodological aspects)]. Trudy 12th vserossiyskoy akusticheskoy konferentsii. [Proceedings of the All-Russian Acoustic Conference. St. Petersburg. Polytech-Press]. 2020. P. 281–284. ISBN 978-5-7422-7029-4 (in Russian).
  5. 5. Бибиков Н.Г., Ковальзон В.М. Реакции нейронов ненаркотизированной кошки на человеческий храп. Тезисы Всероссийской научно-практической XIII конференции “Актуальные проблемы сомнологии”. 2022. С. 11. ISBN: 978-5-6045579-8-3.
  6. 6. Bibikov N.G., Kovalzon V.M. Reaktsii neyronov nenarkotizirovannoy koshki na chelovecheskiy khrap. [Reactions of neurons of an unanesthetized cat to human snoring]. Materialy XIII Vserossiyskoy nauchno-prakticheskoy konferentsii “Aktual’nyye problemy somnologii” [Proceedings of the All-Russian scientific and practical XIII-th conference “Actual problems of somnology”]. 2022. P. 11. ISBN: 978-5-6045579-8-3. (in Russian).
  7. 7. Мельников А.Ю., Мессерле А.А. Корреляция параметров акустического анализа храпа и степени тяжести синдрома обструктивного апноэ сна. Эффективная фармакотерапия. 2019. Т. 15(44). С. 62–66.
  8. 8. Mel’nikov A.Yu., Messerle A.A. Korrelyatsiya parametrov akusticheskogo analiza khrapa i stepeni tyazhesti sindroma obstruktivnogo apnoe sna [Correlation of parameters of acoustic analysis of snoring and severity of obstructive sleep apnea syndrome]. Effektivnaya farmakoterapiya [Effective pharmacotherapy]. 2019. V. 15. No. 44. P. 62–66. (in Russian).
  9. 9. Пигарев И.Н., Бибиков Н.Г., Лиманская А.В., Калмыков В.К. Возможный механизм деструктивного влияния звука храпа на висцеральные системы организма. Тезисы XII Всероссийской научно-практической конференции “Актуальные проблемы сомнологии”. 2020. С. 59-60.
  10. 10. Pigarev I.N., Bibikov N.G., Limanskaya A.V., Kalmykov V.K. Vozmozhnyy mekhanizm destruktivnogo vliyaniya zvuka khrapa na vistseral’nyye sistemy organizma. [Possible mechanism of the destructive influence of the sound of snoring on the visceral systems of the body]. Tezisy XII Vserossiyskoy nauchno-prakticheskoy konferentsii “Aktual’nyye problemy somnologii” [Abstracts XII All-Russian Scientific and Practical Conference “Actual problems of somnology”]. Tezisy XII Vserossiyskoy nauchno-prakticheskoy konferentsii “Aktual’nyye problemy somnologii”. 2020. P. 59-60. (in Russian).
  11. 11. Arshavsky Y.I. Neurons versus networks: the interplay between individual neurons and neural networks in cognitive functions. The Neuroscientist. 2016. V. 23(4). P. 341–355. DOI:10.1177/1073858416670124
  12. 12. Bar-Yosef O., Rotman Y., Nelken I. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J. Neuroscience. 2002. V. 22(19). P. 8619–8632. DOI: 10.1523/JNEUROSCI.22-19-08619.2002.
  13. 13. Bibikov N.G. Addition of noise enhanced neural synchrony to amplitude-modulated sounds in the frog’s midbrain. Hear. Research. 2002. V. 173(1). Р. 21-28. DOI: 10.1016/s0378-5955(02)00456-2
  14. 14. Bibikov N.G. Functional studies of the primary auditory cortex in the cat. Neuroscience and Behavioral Physiol. 2021. V. 51 (8). P. 1169–1189. DOI: 10.1007/s11055-021-01177-0
  15. 15. Bibikov N. G., Pigarev I. N. The main statistical properties of the background activity of cortical neurons in cats during slow-wave sleep. Neuroscience and Behavioral Physiol. 2015. V. 45(2). P. 213-222. DOI:10.1007/s11055-015-0060-5
  16. 16. Bibikov N.G., Makushevich I.V. Dynamics of background and evoked activity of neurons in the auditory cortex of the unanaesthetized cat. In: Kryzhanovsky B., Dunin-Barkowski W., Redko V., Tiumentsev Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research VI. Neuroinformatics 2022. Studies in Computational Intelligence, Springer. 2023. V. 1064. P. 183-190. DOI:10.1007/978-3-031-19032-2_18
  17. 17. Filipchuk A., Schwenkgrub J., Destexhe A., Bathellier B. Awake perception is associated with dedicated neuronal assemblies in the cerebral cortex. Nature Neuroscience. 2022. V. 25. P. 1327–1338. DOI:10.1038/s41593-022-01168-5.
  18. 18. Gabriel M., Julien C., Salin P.A., Comte J.C. Differential recordings of local field potential: A genuine tool to quantify functional connectivity. PLoS ONE. 2018. V.13(12). e0209001. DOI: 10.1371/journal.pone.020900
  19. 19. Gosselin E., Bagur S., Bathellier B. Massive perturbation of sound representations by anesthesia in the auditory brainstem. Science advances. 2024. V. 10 (42). eado2291. DOI: 10.1126/sciadv.ado2291
  20. 20. Imig T.J., Bibikov N.G., Pourrier P., Samson F.K. Directionality derived from pinna-cue spectral notches in cat dorsal cochlear nucleus. J. Neurophysiol. 2000. V. 83(2). P. 907–925. DOI: 10.1152/jn.2000.83.2.907
  21. 21. Insanally M.N., Carcea I., Field R.E., Rodger C.C., DePasquale B., Rajan K., DeWeese M.R., Albanna B.F., Froemke R.F. Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons. eLife. 2019. V. 8. e42409. DOI: 10.7554/eLife.42409.
  22. 22. Loomba S., Straehle J., Gangadharan V., Heike N., Khalifa A., Motta A., Ju N., Sievers M., Gempt J., Meyer H.S., Helmstaedter M. Connectomic comparison of mouse and human cortex. Science. 2022. V. 377. 6602. eabo0924. DOI: 10.1126/ science.abo0924.
  23. 23. López Espejo M., David S.V. A sparse code for natural sound context in auditory cortex. Curr. Res. Neurobiol. 2024. V. 6. 100118. DOI: 10.1016/j.crneur.2023.100118.
  24. 24. McGinley M.J., Vinck M., Reimer J., Batista-Brito R., Zagha E., Cadwell C.R., Tolias A.S., Cardin J.A., McCormick D.A. Waking state: rapid variations modulate neural and behavioral responses. Neuron. 2015. V. 87(6). P. 1143–1161. DOI: 10.1016/j.neuron.2015.09.012.
  25. 25. Noda T., Aschauer D.F., Chambers A.R., et al. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci. 2024. V. 18. 1366200. DOI: 10.3389/fncel.2024.1366200.
  26. 26. Pigarev I.N., Saalmann Y.B., Vidyasagar T.R. A minimally invasive and reversible system for chronic recordings from multiple brain sites in macaque monkeys. J. Neurosci. Methods 2009. V. 181. P. 151–158. doi: 10.1016/j.jneumeth.2009.04.024
  27. 27. Ponce-Alvarez A. Network mechanisms underlying the regional diversity of variance and time scales of the brain’s spontaneous activity fluctuations. J. Neuroscience. 2025. V.45(10). e1699242024. DOI: 10.1523/JNEUROSCI.1699-24.2024.
  28. 28. Qin L., Wang J.Y., Sato Y. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. J. Neurophysiol. 2008. V. 99. P. 2305–2319. DOI:10.1152/jn.01125.2007.
  29. 29. Shapson-Coe A., Januszewski M., Berger D. R., Pope, A., Wu Y., Blakely T., ... Lichtman J.W. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science. 2024. V. 384(6696). p.eadk4858. DOI: 10.1126/science.adk4858
  30. 30. Suga N. Specialization of the auditory system for the processing of bio-sonar information in the frequency domain: Mustached bats. Hearing Research. 2018. V. 361. DOI:10.1016/j.heares.2018.01.012
  31. 31. Weinberger N. M., McKenna T. M. Sensitivity of single neurons in auditory cortex to contour: toward a neurophysiology of music perception. Music Perception: An Interdisciplinary Journal. 1988. V. 5 (4). P. 355–389. DOI: 10.2307/40285407
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека