RAS PhysiologyСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

Three-dimensional object detection based on an L-shape model in autonomous motion systems

PII
S0235009225010078-1
DOI
10.31857/S0235009225010078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 39 / Issue number 1
Pages
66-78
Abstract
The ability of automated vehicles (AVs) to determine the position of objects in three-dimensional space plays a key role in motion planning. The implementation of algorithms that solve this problem is particularly difficult for systems that use only monocular cameras, as depth estimation is a non-trivial task for them. Nevertheless, such systems are widespread due to their relative cheapness and ease of use. In this paper, we propose a method to determine the position of vehicles (the most common type of objects in urban scenes) in the form of oriented bounding boxes in birds’-eye view based on an image obtained from a single monocular camera. This method consists of two steps. In the first step, a projection of the visible boundary of the vehicle in the birds’-eye view is computed based on 2D obstacle detections and roadway segmentation in the image. The resulting projection is assumed to represent the noisy measurements of the two orthogonal sides of the vehicle. In the second step, an oriented bounding box is constructed around the obtained projection. For this stage, we propose a new algorithm for constructing the bounding box based on the assumption of the L-shape model. The algorithm was tested on a prepared real-world dataset. The proposed L-shape algorithm outperformed the best of the compared algorithms in terms of the Jaccard coefficient (Intersection over Union, IoU) by 2.7%.
Keywords
трехмерная детекция L-shape монокулярная детекция объектов автономное пилотирование
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Шипитько О. С., Тетерюков Д. О. Разработка алгоритма оценки пространственного положения коробок для автоматизации процесса формирования заказов на складах. Материалы VI Всероссийской молодежной школы по робототехни. Общество с ограниченной ответственностью “Волгоградское научное издательство” (Волгоград), 2017. С. 9-18.
  2. 2. Arnon D.S., Gieselmann J. P. A linear time algorithm for the minimum area rectangle enclosing a convex polygon, 1983.
  3. 3. Billings G., Johnson-Roberson M. Silhonet: An rgb method for 6d object pose estimation IEEE Robotics and Automation Letters, 2019. V. 4(4). P. 3727-3734. DOI: 10.48550/arXiv.1809.06893
  4. 4. Chen X., Kundu K., Zhang Z., Ma H., Fidler S., Raquel Urtasun Monocular 3d object detection for autonomous driving Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. P. 2147-2156. DOI: 10.1109/CVPR.2016.236
  5. 5. Fan Z., Zhu Y., He Y., Sun Q., Liu H., He J. Deep learning on monocular object pose detection and tracking: A comprehensive overview ACM Computing Surveys, 2022. V. 55(4). P. 1-40. DOI: 10.1145/3524496
  6. 6. Geiger A., Lenz P., Stiller C., Urtasun, R. Vision meets robotics: The kitti dataset The International Journal of Robotics Research, 2013. V. 32(11). P. 1231-1237. DOI: 10.1177/0278364913491297
  7. 7. Jiang D., Li G., Sun Y., Hu J., Yun J., Liu Y. Manipulator grabbing position detection with information fusion of color image and depth image using deep learning Journal of Ambient Intelligence and Humanized Computing, 2021. V. 12. P. 10809-10822. DOI: 10.1007/s12652-020-02843-w
  8. 8. Kim Y., Kim J., Koh J., Choi J. W. Enhanced Object Detection in Bird’s Eye View Using 3D Global Context Inferred From Lidar Point Data 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019. P. 2516-2521. DOI: 10.1109/IVS.2019.8814276
  9. 9. Kuhn H. W. The Hungarian method for the assignment problem Naval research logistics quarterly, 1955. V. 2(1‐2). P. 83-97. DOI: 10.1002/nav.3800020109
  10. 10. Labayrade R., Aubert D., Tarel J.P. Real time obstacle detection in stereovision on non-flat road geometry through” v-disparity” representation Intelligent Vehicle Symposium, 2002. IEEE, 2002. V. 2. P. 646-651. DOI: 10.1109/IVS.2002.1188024
  11. 11. Liu X., Xue N., Wu T. Learning auxiliary monocular contexts helps monocular 3d object detection Proceedings of the AAAI Conference on Artificial Intelligence, 2022. V. 36(2). P. 1810-1818. DOI: 10.1609/aaai.v36i2.20074
  12. 12. Liu Y., Geng L., Zhang W., Gong Y., Xu Z. Survey of video based small target detection Journal of Image and Graphics, 2021а. V. 9(4). P. 122-134. DOI: 10.18178/JOIG.9.4.122-134
  13. 13. Liu Z., Zhou D., Lu F., Fang J., Zhang L. Autoshape: Real-time shape-aware monocular 3d object detection Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021б. P. 15641-15650. DOI: 10.1109/ICCV48922.2021.01535
  14. 14. Sholomov D. L. Application of shared backbone DNNs in ADAS perception systems ICMV, 2020. P. 1160525. DOI: 10.1117/12.2586932
  15. 15. Smagina A.A., Shepelev D.A., Ershov E.I., Grigoryev A.S. Obstacle detection quality as a problem-oriented approach to stereo vision algorithms estimation in road situation analysis Journal of Physics: Conference Series. IOP Publishing, 2018. V. 1096(1). P. 012035. DOI: 10.1088/1742-6596/1096/1/012035
  16. 16. Tekin B., Sinha S.N., Fua P. Real-time seamless single shot 6d object pose prediction Proceedings of the IEEE conference on computer vision and pattern recognition, 2018. P. 292-301. DOI: 10.1109/CVPR.2018.00038
  17. 17. Wang H., Wang Z., Lin L., Xu F., Yu J., Liang H. Optimal vehicle pose estimation network based on time series and spatial tightness with 3D lidars Remote Sensing, 2021. V. 13(20). P. 4123. DOI: 10.3390/rs13204123
  18. 18. Wang P. Research on comparison of lidar and camera in autonomous driving Journal of Physics: Conference Series. IOP Publishing, 2021. V. 2093(1). P. 012032. DOI: 10.1088/1742-6596/2093/1/012032
  19. 19. Wu D., Liao M. W., Zhang W. T., Wang X.G., Bai X., Cheng W. Q., Liu W. L. You only look once for panoptic driving perception, 2022, V. 19. P. 550-562. DOI: 10.1007/s11633-022-1339-y
  20. 20. Yu Q., Araújo H., Wang H. A stereovision method for obstacle detection and tracking in non-flat urban environments Autonomous Robots, 2005. V. 19. P. 141-157. DOI: 10.1007/s10514-005-0612-6
  21. 21. Zhang Z., Weiss, Hanson Qualitative obstacle detection 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1994. P. 554-559. DOI: 10.1109/CVPR.1994.323881
  22. 22. Zhu Z., Zhang Y., Chen H., Dong Y., Zhao S., Ding W., Zhong J., Zheng S. Understanding the Robustness of 3D Object Detection With Bird’s-Eye-View Representations in Autonomous Driving Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. P. 21600-21610. DOI: 10.1109/CVPR52729.2023.02069
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library