ОФСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

Никотинамид-стрептозотоцин-индуцированный сахарный диабет 2-го типа приводит к нарушению функционирования основной обонятельной системы у крыс-самцов линии WISTAR

Код статьи
S0235009225010067-1
DOI
10.31857/S0235009225010067
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 39 / Номер выпуска 1
Страницы
56-65
Аннотация
У пациентов с сахарным диабетом отмечается снижение обонятельной функции по сравнению со здоровыми людьми. Гипосмия чаще отмечается при диабете 2-го типа (СД2) и характеризуется снижением способности распознавать запахи, ухудшением обонятельной памяти, что снижает качество жизни пациентов. Механизмы развития гипосмии требуют изучения на экспериментальных моделях, однако на большинстве широко используемых животных моделях СД2 такие исследования не проводились. Целью настоящей работы являлось исследование обонятельной функции на модели никотинамид-стрептозотоцин-индуцированного СД2 у крыс с помощью широко используемых поведенческих тестов результативности поиска пищи по запаху и обонятельного предпочтения. На модели СД2 у крыс-самцов показано снижение результативности и повышение времени, затраченного на поиск пищевых объектов по запаху, по сравнению с контрольной группой, что может указывать на развитие гипосмии у диабетических животных. Результаты теста на дифференцировку феромонального миметика изовалериановой кислоты от биологически-индиферентных одорантов не выявили различий между группами. Полученные результаты свидетельствуют, что развитие СД2 у взрослых крыс преимущественно влияет на функционирование основной обонятельной системы, нежели на работу дополнительной, отвечающей за восприятие феромонов и феромональных миметиков.
Ключевые слова
сахарный диабет 2-го типа обоняние крыса тест результативности поиска пищи тест обонятельного предпочтения никотинамид-стрептозотоцин-индуцированная модель
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Шуклина М.Н. Особенности обонятельной чувствительности человека к запахам феромонального типа. Дисс. канд. биол. наук. Нижний Новгород. 2012. 131 с.
  2. 2. Amoore J.E. Specific anosmia and the concept of primary odors. Chemical senses. 1977. V. 2(3). P. 267-281. https://doi.org/10.1093/chemse/2.3.267
  3. 3. Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition. 2014. V. 30(1). P. 1-9. https://doi.or/10.1016/j.nut.2013.05.013
  4. 4. Baum M.J. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Frontiers in neuroanatomy. 2012. V. 6. P. 20. https://doi.org/10.3389/fnana.2012.00020
  5. 5. Beny Y., Kimchi T. Conditioned odor aversion induces social anxiety towards females in wild‐type and TrpC2 knockout male mice. Genes, Brain and Behavior. 2016. V. 15(8). P. 722-732. https://doi.org/10.1111/gbb.12320
  6. 6. Brahmachary R.L. Ecology and chemistry of mammalian pheromones. Endeavour. 1986. V. 10(2). P. 65-68. https://doi.org/10.1016/0160-9327 (86)90132-8
  7. 7. Deer J., Koska J., Ozias M., Reaven P. Dietary models of insulin resistance. Metabolism. 2015. V. 64(2). P. 163-171. https://doi.org/10.1016/j.metabol.2014.08.013
  8. 8. Falkowski B., Chudziński M., Jakubowska E., Duda-Sobczak A. Association of olfactory function with the intensity of self-reported physical activity in adults with type 1 diabetes. Pol Arch Intern Med. 2017. V. 127(7—8). P. 476—480. https://doi.org/10.20452/pamw.4073
  9. 9. Fraser E.J., Shah N.M. Complex chemosensory control of female reproductive behaviors. PLoS One. 2014. V. 9(2). P. e90368. https://doi.org/10.1371/journal.pone.0090368
  10. 10. Gascón C., Santaolalla F., Martínez A., Sánchez Del Rey A. Usefulness of the BAST-24 smell and taste test in the study of diabetic patients: a new approach to the determination of renal function. Acta oto-laryngologica. 2013. V. 133(4). P. 400—404. https://doi.org/10.3109/00016489.2012.746471
  11. 11. Ghasemi A., Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: a practical guide. EXCLI J. 2023. V. 22. P. 274-294. https://doi.org/10.17179/excli2022-5720.
  12. 12. Gouveri E., Katotomichelakis M., Gouveris H., Danielides V., Maltezos E., Papanas N. Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease? Angiology. 2014. V. 65(10). P. 869—876. https://doi.org/10.1177/0003319714520956
  13. 13. Ishii K.K., Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neuroscience Research. 2019. V. 140. P. 59-76. https://doi.org/10.1016/j.neures.2018.10.009
  14. 14. Islam S., Choi H. Nongenetic Model of Type 2 Diabetes: A Comparative Study. Pharmacology. 2007. № 79. P. 243–249. https://doi.org/10.1159/000101989.
  15. 15. Jiménez A., Herrera-González A., Organista-Juárez D., Estudillo E., Velasco I., Guerrero-Vargas N. N., Guzmán-Ruíz M. A., Guevara-Guzmán R. Diabetes Induces Permanent Deleterious Effects in the Olfactory Bulb Associated with Increased Tyrosine Hydroxylase Expression and ERK1/2 Phosphorylation. ACS Chem Neurosci 2022. V. 13. P. 2821–2828. https://doi.org/10.1021/acschemneuro.2c00319
  16. 16. Jiménez A., Organista-Juárez D., Torres-Castro A., Guzmán-Ruíz M.A, Estudillo E., Guevara-Guzmán R. Olfactory dysfunction in diabetic rats is associated with miR-146a overexpression and inflammation. Neurochemical Research. 2020. V. 45(8). P. 1781-1790. https://doi.org/10.1007/s11064—020—03041-y
  17. 17. King A. J.F. The use of animal models in diabetes research. British Journal of Pharmacology. 2012. V. 166(3). P. 877—894. https://doi.org/10.1111/j.1476—5381.2012.01911.x
  18. 18. Le Floch J. P., Le Lièvre G., Labroue M., Paul M., Peynegre R., Perlemuter L. et al. Smell dysfunction and related factors in diabetic patients. Diabetes care. 1993. V. 16.(6). P. 934—937. https://doi.org/10.2337/diacare.16.6.934
  19. 19. Lietzau G., Davidsson W., Östenson C. G., Chiazza F., Nathanson D., Pintana H., Skogsberg J., Klein T., Nyström T., Darsalia V., Patrone C. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta neuropathologica communications. 2018. V. 6. P. 1–15. https://doi.org/10.1186/s40478-018-0517-1
  20. 20. Michael R. P., Bonsall R. W., Warner P. Human vaginal secretions: volatile fatty acid content. Science. 1974. V. 186(4170). P. 1217-1219. https://doi.org/10.1126/science.186.4170.1217
  21. 21. Marino F., Salerno N., Scalise M., Salerno L., Torella A., Molinaro C., Chiefalo A., Filardo A., Siracusa C., Panuccio G. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. International Journal of Molecular Sciences. 2023. V. 24(2). 1132. https://doi.org/10.3390/ijms24021132
  22. 22. Monereo-Sánchez J., Jansen J. F.A., Köhler S., van Boxtel M. P.J., Backes W. H., Stehouwer C. D.A., Kroon A. A., Kooman J. P., Schalkwijk C. G., Linden D. E.J., Schram M. T. The association of prediabetes and type 2 diabetes with hippocampal subfields volume: The Maastricht study. NeuroImage: Clinical. 2023. V. 39. 103455 https://doi.org/10.1016/j.nicl.2023.103455.
  23. 23. Rabiller G., Ip Z., Zarrabian S., Zhang H., Sato Y., Yazdan-Shahmorad A., Liu J. Type-2 Diabetes Alters Hippocampal Neural Oscillations and Disrupts Synchrony between the Hippocampus and Cortex. Aging and disease. 2024, V. 15(5). P. 2255-2270 https://doi.org/10.14336/AD.2023.1106
  24. 24. Pause B. M. Are androgen steroids acting as pheromones in humans? Physiology & behavior. 2004. V. 83(1). P. 21–29. https://doi.org/10.101/j.physbeh.26004.07.019.
  25. 25. Rivière S, Soubeyre V, Jarriault D, Molinas A, Léger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep. 2016 V. 6. P.34011. https://doi.org/10.1038/srep34011
  26. 26. Su C. Y., Menuz K., Carlson J. R. Olfactory perception: receptors, cells, and circuits. Cell. 2009. V. 139(1). P. 45–59. https://doi.org/10.1016/j.cell.2009.09.015
  27. 27. Várkonyi T., Körei A., Putz Z., Kempler P. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy? Angiology. 2014. V. 65(10). P. 857—860. https://doi.org/10.1177/0003319714526971
  28. 28. Weinstock R. S., Wright H. N., Smith D. U. Olfactory dysfunction in diabetes mellitus. Physiology & behavior. 1993. V. 53(1). P. 17–21. https://doi.org/10.1016/0031—9384 (93)90005-z
  29. 29. Yahyaeipour H., Ganji F., Sepehri H., Nazari Z. The effect of type 2 diabetes on the olfactory bulb structure of Wistar rats. Nova Biologica Reperta. 2023. V. 10(1). P. 11–16. https://doi.org/10.29252/nbr.10.1.11
  30. 30. Zaghloul H., Pallayova M., Al-Nuaimi O., Hovis K. R., Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabetic Medicine. 2018. V. 35(1). P. 41–52. https://doi.org/10.1111/dme.13542
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека