RAS PhysiologyСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

Methodological Recommendations for the Creation of Sensor Measurement Systems for Respiratory Rate Monitoring Based on Photoplethysmographic Signal Processing

PII
10.31857/S0235009224030057-1
DOI
10.31857/S0235009224030057
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 38 / Issue number 3
Pages
82-94
Abstract
A methodical apparatus for creating sensor measurement systems for monitoring human respiration rate is proposed. It includes a method for estimating respiratory rate based on statistical analysis of photoplethysmographic signals (human pulse wave), a method for selecting priority regions for estimating respiratory rate, and a criterion for determining the required bracelet tension during measurements. The application of the respiratory rate estimation method involves calculating the Correntropy spectral density of the pulse wave signal. A distinctive feature of the method is the use of an algorithm for selecting the priority empirical mode of the Hilbert-Huang decomposition, which is most closely related to the respiratory rate. Experimental verification of the method showed that the mean value of the absolute error for 58.8% of the sample of calculated respiratory rate values did not exceed 1 breath/min, and the 95% confidence interval for the mean absolute error of the entire sample was [0.72–2.2] breaths/min.
Keywords
пульсовая волна фотоплетизмограммы частота дыхательных движений функция коррентропии с оптимальным ядром эмпирическое распределение Гильберта–Хуанга мгновенная частота Гильберта дискретное преобразование Фурье
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Айфичер Э. С., Джервис Б. У. Цифровая обработка сигналов: практический подход, 2 изд.: пер. с англ. М., Вильямс, 2008. 992 с.
  2. 2. Гаранин А. А., Шипунов И. Д., Рубаненко А. О., Санникова Н. О. Бесконтактные методы измерения частоты дыхания (обзор литературы). Вестник новых медицинских технологий. Электронное издание. 2023. № 5. C. 64–72. http://doi.org/10.24412/2075-4094-2023-5-1-9.
  3. 3. Гуцол Л. О., Непомнящих С. Ф., Корытов Л. И., Губина М. И., Цыбиков Н. Н., Витковский Ю. А. Физиологические и патофизиологические аспекты внешнего дыхания. ГБОУ ВПО ИГМУ Минздрава России, Кафедра патологической физиологии с курсом клинической иммунологии, кафедра нормальной физиологии. Иркутск, ИГМУ, 2014. 116 с.
  4. 4. Кан Ш. Ч., Микулович А. В., Микулович В. И. Анализ нестационарных сигналов на основе преобразования Гильберта–Хуанга. Информатика. 2010. № 2. C. 25–35.
  5. 5. Кубланов В. С., Долганов А. Ю., Костоусов В. Б. Немирко А. П., Манило Л. А., Петренко Т. С., Gamboa H., Rodriges J. Биомедицинские сигналы и изображения в цифровом здравоохранении: хранение, обработка и анализ: учебное пособие / Екатеринбург: Изд-во Урал. ун-та, 2020. 240 с.
  6. 6. Марпл.-мл. С. Л. Цифровой спектральный анализ и его приложения. Пер. с англ. М.: Мир, 1980. 584 с.
  7. 7. Рангайян Р. М. Анализ биомедицинских сигналов. Практический подход. Пер. с англ. под ред. А. П. Немирко. М., ФИЗМАТЛИТ, 2007. 440 с.
  8. 8. Chang H-H. Hsu C. C., Chen C-Y., Lee W-K., Hsu H-T.,. Shyu K-K, Yeh J-R., Lin P.-J., Lee P-L. A Method for Respiration Rate Detection in Wrist PPG Signal Using Holo-Hilbert Spectrum. IEEE Sensors Journal. 2018. V.18(18), September 15. P. 11. http://doi.org/10.1109/JSEN.2018.2855974
  9. 9. Dehkordi P., A. , Molavi B., J. M. Extracting Instantaneous Respiratory Rate from Multiple Photoplethysmogram Respiratory-Induced Variations. Front. in Physiol. 2018. V. 9. P. 10. http://doi.org /10.3389/fphys.2018.00948
  10. 10. Elgendi M Menon Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device. Data Descriptor. 2022. V. 7(9). № 132.P. 12. https://doi.org/10.3390/data7090132
  11. 11. Garde A., Karlen W., Ansermino J. M., Dumont G. A. Estimating Respiratory and Heart Rates from the Correntropy Spectral Density of the Photoplethysmogram. PLOS ONE. 2014. V. 9(1). P. 11. https://doi.org/10.1371/ journal.pone.0086427
  12. 12. Herawati N. E., Nisa K., Setiawan E. The Optimal Bandwidth for Kernel Density Estimation of Skewed. Distributional: A Case Study on Survival Time Data of Cancer Patients. Presiding Seminar Nasional Metode Quantitative. 2017. P. 380–388.
  13. 13. Huang N. E., Hu K., Yang A. C., Chang H.-C., Jia D., Liang W.-K., Yeh J. R., Kao C.-L., Juan C.-H., Peng C.K., Meijer J. H., Wang Y.-H., Long S. R., Wu Z. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philosophical Transactions Series A. Mathematical, physical, and engineering sciences. 374 (2065): 201502062016. 2016. P. 21. http://dx.doi.org/10.1098/rsta.2015.0206
  14. 14. Huang N. E., Shen Z., Long S. R., . Wu M.L.C. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Ro. Soc. Lond. A.1998. V. 454. P. 903–995. http://dx.doi.org/10.1098/rspa.1998.0193
  15. 15. Huang N. E., Wu M-C., Long S. R., Shen S. S.P. , Qu W., Gloersen P., Fan K. L. A confidence limit for empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soс.: Mathematical, Physical and Engineering Sciences. 2003. V. 459. P. 2317–23425. http://dx.doi.org/10.1098/rspa.2003.1123
  16. 16. Huang N. E., Wu Z., Long S. R., Arnold K. C., Chen X., Blank K. On instantaneous frequency. Advances in Adaptive Data Analysis. 2009. V. 1(2). P. 177–229. http://dx.doi.org/10.1142/S1793536909000096
  17. 17. Huang N. E , Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. 2008. V. 46(2): RG2008. P. 23. http://dx.doi.org/10.1029/2007RG000228
  18. 18. Johansson A. Neural network for photoplethysmographic respiratory rate monitoring. Med. Biol. Eng. Computing 2003. V. 41(3). P. 242–248. http://dx.doi.org/10.1007/BF02348427
  19. 19. Lázaro J., Gil E., Bailón R., Laguna P. Deriving Respiration from the pulse photoplethysmographic signal. Computing in Cardiology. 2011. V. 38. P. 713–716. https://www.researchgate.net/publication/254019768
  20. 20. Nita G. M., Gary D. E., Liu Z., Hurford G. J., White S. M. Radio Frequency Interference Excision Using Spectral-Domain Statistics. The Astronomical Society of the Pacific. 2007. V. 119. P. 805–827. http://dx.doi.org/10.1086/520938
  21. 21. PPG-BP Database. 2022. https://figshare.com/articles/dataset/PPG-BP_Database_zip/5459299?file=9441097
  22. 22. Real-World PPG dataset. 2019. https://data.mendeley.com/datasets/yynb8t9x3d/1
  23. 23. Santamaria I., Pokharel P. P., Principe J. C. Generalized correlation function: definition, properties, and application to blind equalization. IEEE Transactions on Signal Processing. 2006, V. 54(6). P. 2187–2197. http://dx.doi.org/10.1109/TSP.2006.872524
  24. 24. Shelley K. H., A. A R. G. The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform. J. Clin. Monit. Compute. 2006. № 20(2). P. 81–87. http://dx.doi.org/10.1007/s10877-006-9010-7
  25. 25. Silverman B. W. Density Estimation for Statistics and Data Analysis. London. Chapman & Hall/CRC. 1998. P. 176. https://doi.org/10.1201/9781315140919
  26. 26. Tiara Medical. Kernel KN-601M. 2013. http://www.kernel-medical.ru/monitor/kn-601m
  27. 27. Vrabie V. D., Granjon P., Serviere C. Spectral Kurtosis: from Definition to Application. 6th IEEE International Workshop on Nonlinear Signal and Image Processing (NSIP 2003). 2003. P. 5. Grado-Trieste, Italy. hal-00021302. http//Hal. Science/ hal-00021302.
  28. 28. Weifeng L., Pokharel P. P., Principe J. C. Correntropy: Properties and Applications in Non-Gaussian Signal Processing. IEEE Transactions on Signal Processing. 2007. V. 55(11). P. 5286–5298. https://doi.org/10.1109/TSP.2007.896065
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library