- PII
- 10.31857/S0235009224030044-1
- DOI
- 10.31857/S0235009224030044
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 38 / Issue number 3
- Pages
- 63-81
- Abstract
- The article is devoted to the description and analysis of a computer model that was created by D. S. Lebedev to demonstrate the possibility of a positive effect of fixation microsaccadic eye movements on the perception of small stimuli. The model is based on the assumption that in the process of fixing the gaze on the test stimulus, several “neural images” of this stimulus, resulting from microsaccades, are summed up in the brain. The series of summed neural images correspond to a sequence of shifted positions of the optical image of a stimulus on the retina. To accurately superimpose neural images on each other, a mechanism for compensating fixation saccadic microshifts is introduced into the model, identical to the mechanism that ensures the constancy of spatial perception in the case of macrosaccades, i.e. when turning the eyes to view large objects or scenes. The author of the model assessed the possibility of improving the quality of visible images by increasing the signal-to-noise ratio, which can be achieved using realistic spatiotemporal parameters of test images, neural noise and eye micromovements, selected bу means of literature analysis. Results of model calculation obtained for the specific parameters of the retina and eye movements showed that the considered summation mechanism with compensation for saccadic shifts can progressively improve the quality of visible test stimuli when the number of summed neural images increases to approximately seven or eight, after which the positive effect practically does not increase. In this article, based on the material of recordings of eye movements in relevant experiments, the degree of realism of this model is discussed.
- Keywords
- зрительное восприятие фовеальное зрение фиксационная микросаккада моделирование процесс зрения айтрекинг
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Басова О. А. Модели дефектов матрицы фотоэмиссионных дисплеев и методы их камуфлирования. Дис. канд. технич. наук. М., 2022. 120 с.
- 2. Бонгард М. М., Голубцов К. В. О типах горизонтального взаимодействия, обеспечивающих нормальное видение перемещающихся по сетчатке изображений (моделирование некоторых функций зрения человека). Биофизика. 1970. Т. 15. № 2. С. 361–373.
- 3. Лебедев Д. С. Компьютерная модель сети карликовых нейронов в центральной сетчатке. Сенсорные системы. 2003. Т. 17. № 2 С. 91–106.
- 4. Лебедев Д. С. Модель механизма распознавания ориентации 3-полосных двухградационных оптотипов. Сенсорные cистемы. 2015. T. 29. № 4. C. 309–320.
- 5. Лебедев Д. С., Белозеров А. Е., Рожкова Г. И. Оптотипы для точной оценки остроты зрения. Пат. 2447826 РФ, МПК А61В 3/00. Заявитель и патентообладатель ИППИ РАН. № 2010146806 от 20.04.2012.
- 6. Лебедев Д. С., Бызов А. Л. Электрические связи между фоторецепторами способствуют выделению протяженных границ между разнояркими полями. (Модель сети фоторецепторов на гексагональной решетке). Сенсорные cистемы. 1998. T. 12. № 3. C. 329–342.
- 7. Лосев И. С., Шура-Бура Т. М. Модель восприятия движущихся и неподвижных объектов. Биофизика. 1981. Т. 26. № 5. С. 854–859.
- 8. Рожкова Г. И., Грачева М. А., Лебедев Д. С. Оптимизация тестовых знаков и таблиц для измерения остроты зрения. Невские горизонты-2014. Материалы научной конференции офтальмологов. СПб: Политехника-сервис. 2014. С. 563–567.
- 9. Рожкова Г. И., Николаев П. П., Щадрин В. Е. О факторах, определяющих особенности восприятия стабилизированных сетчаточных изображений. Физиология человека. 1982. Т.8. № 4. С. 564–571.
- 10. Терехин А. П., Грачева М. А., Рожкова Г. И., Лебедев Д. С. Интерактивная программа для оценки остроты зрения на основе точного измерения порогов с использованием трёх оптотипов “Тип-Топ”. Свидетельство о государственной регистрации программы для ЭВМ № 2015616714 от 19.06.15.
- 11. Филин В. А. Автоматия саккад. М.: Изд-во МГУ, 2002. 240 с.
- 12. Харкевич А. А. Борьба с помехами. М.: Наука, 1965. 276 с.
- 13. Ярбус А. Л. Роль движений глаз в процессе зрения. М.: Наука, 1965. 166 c.
- 14. Arend L. E. Spatial differential and integral operations in human vision: implications of stabilized retinal image fading. Psychol. Rev. 1973. V. 80. Р. 374–395.
- 15. Bridgeman B., Palca J. The role of microsaccades in high acuity observational tasks. Vision Res. 1980. V. 20. Р. 813–817.
- 16. Cherici C., Kuang X., Poletti M., Rucci M. Precision of sustained fixation in trained and untrained observers. J. Vis. 2012. V. 12(6). Р. 1–16. https://doi.org/10.1167/12.6.31
- 17. Cornsweet T. N. Determination of the stimuli for involuntary drifts and saccadic eye movements. J. Opt. Soc. Am. 1956. V. 46. Р. 987–988.
- 18. Curcio C. A., Sloan K. R., Kalina R. E., Hendrickson A. E. Human photoreceptor topography. J. Comp. Neurol. 1990. V. 292(4). P. 497–523. https://doi.org/10.1002/cne.902920402
- 19. Ditchburn R. W. Eye-movements and visual perception. Oxford. Clarendon Press, 1973.
- 20. Ditchburn R. W. The function of small saccades. Vision Res. 1980. V. 20. Р. 271–272.
- 21. Ditchburn R. W., Fender D. H., Mayne S. Vision with controlled movements of the retinal image. J. Physiol. 1959. V. 145(1). Р. 98–107. https://doi.org/10.1113/jphysiol.1959.sp006130.
- 22. Donner K., Hemilä S. Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research. 2007. V. 47. P. 1166–1177. https://doi.org/10.1016/j.visres.2006.11.024
- 23. Engbert R. Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. In S. Martinez-Conde S. L. Macknik J.-M. Alonso P. U. Tse. Progress in Brain Research. 2006. V. 154. P. 172–192. https://doi.org/10.1016/S0079-6123 (06)54009-9
- 24. Engbert R., Kliegel R. Microsaccades uncover the orientation of covert attention. Vision Research. 2003. V. 43. P. 1035–1045. https://doi.org/10.1016/S0042-6989 (03)00084-1
- 25. Gerrits H. J., Vendrik A. J. Artificial movements of a stabilized image. Vision Research. 1970. V. 10. P. 1443–1456. https://doi.org/10.1016/0042-6989 (70)90094-5
- 26. Hafed Z. M., Clark J. J. Microsaccades as an overt measure of covert attention shifts. Vision Research. 2002. V. 42. P. 2533–2545. https://doi.org/10.1016/S0042-6989 (02)00263-8
- 27. Holmqvist K., Blignaut P. Small eye movements cannot be reliably measured by video-based P-CR eye-trackers. Behav. Res. 2020. V. 52. Р. 2098–2121. https://doi.org/10.3758/s13428-020-01363-x
- 28. Intoy J., Rucci M. Finely tuned eye movements enhance visual acuity. Nat Commun. 2020. 11. 795. https://doi.org/10.1038/s41467-020-14616-2
- 29. Kelly D. H. Motion and vision. I. Stabilized images of stationary gratings. J. Opt. Soc. Am. 1979. V. 69(9). Р. 1266–1274. https://doi.org/10.1364/JOSA.69.001266
- 30. Kowler E. Eye movements: the past 25 years. Vision Res. 2011. V. 51. Р. 1457–1483. https://doi.org/10.1016/j.visres.2010.12.014
- 31. Kowler E., Steinman R. M. Miniature saccades: eye movements that do not count. Vision Res. 1979. V. 19. Р. 105–108.
- 32. Kowler E., Steinman R. M. The role of small saccades in counting. Vision Res. 1977. V. 17. Р. 141–146. https://doi.org/10.1016/0042-6989 (77)90212-7
- 33. Lebedev D. S., Byzov A. L., Govardovskii V. I. Photoreceptor coupling and boundary detection. Vision Research. 1998. V. 38. P. 3161–3169.
- 34. Lebedev D. S., Marshak D. W. Amacrine cell contributions to red-green color opponency in central primate retina: A model study. Visual Neuroscience. 2007. V. 24(40). Р. 1–13. https://doi.org/10.1017/S0952523807070502
- 35. Lebedev D. S., Rozhkova G. I., Bastakov V. A., Kim C.-Y., Lee S.-D. Local contrast enhancement for improving screen images exposed to intensive external light. GraphiCon’2009. Conference Proceedings. 19th International Conference on Computer Graphics and Vision. Moscow State University. 2009. P. 112–116.
- 36. Martinez-Conde S., Macknik S. L., Hubel D. H. The role of fixational eye movements in visual perception. Nature Reviews Neuroscience. 2004. V. 5. 229–240. https://doi.org/10.1038/nrn1348
- 37. Otero-Millan J., Troncoso X. G., Macknik S. L., Serrano-Pedraza I., Martinez Conde S. Saccades and microsaccades during visual fixation, exploration and search: Foundations for a common saccadic generator. Journal of Vision. 2008. V. 8(14). Р. 1–18. https://doi.org/10.1167/8.14.21
- 38. Poletti M., Rucci M. A compact field guide to the study of microsaccades: challenges and functions. Vis. Res. 2016. V. 118. Р. 83–97. https://doi.org/10.1016/j.visres.2015.01.018
- 39. Ratnam K., Domdei N., Harmening W. M., Roorda A. Benefits of retinal image motion at the limits of spatial vision. J. Vis. 2017. 17(1): 30. Р. 1–11. https://doi.org/10.1167/17.1.30
- 40. Riggs L. A., Ratliff F., Cornsweet J. C., Cornsweet T. N. The disappearance of steadily fixated visual test objects. J. Opt. Soc. Am. 1953. V. 43. Р. 495–501.
- 41. Rolfs M. Microsaccades: small steps on a long way. Vision Res. 2009. V. 49. Р. 2415–2441. https://doi.org/10.1016/j.visres.2009.08.010
- 42. Roorda A., Metha A. B., Lennie P., Williams D. R. Packing arrangement of the three cone classes in primate retina. Vis. Res. 2001. V. 41. Р. 1291–1306. https://doi.org/10.1016/S0042-6989 (01)00043-8.
- 43. Rozhkova G., Lebedev D., Gracheva M., Rychkova S. Optimal optotype structure for monitoring visual acuity. Рroceedings of the Latvian Academy of Sciences. 2017. V. 71. No. 5(710). Р. 327–338. https://doi.org/10.1515/prolas-2017-0057
- 44. Rozhkova G. I., Nikolaev P. P. Visual percepts in the cases of binocular and monocular viewing stabilized test objects, Ganzfeld stimuli, and prolonged afterimages. Perception. 2015. V. 44(8-9). Р. 952–972. https://doi.org/10.1177/0301006615594957
- 45. Rozhkova G. I., Nickolayev P. P., Shchadrin V. E. On the factors that determine the peculiarities of stabilized retinal image perception. Human Physiology. 1982а. No. 8. Р. 564–571.
- 46. Rozhkova G. I., Nickolaev P. P., Shchadrin V. E. Perception of stabilized retinal stimuli in dichoptic viewing conditions. Vision Res. 1982 b. V. 22. N 2. P. 293–302.
- 47. Rucci M. Fixational eye movements, natural image statistics, and fine spatial vision. Network: Computation in Neural Systems. 2008. V. 19(4). 253–285. https://doi.org/10.1080/09548980802520992
- 48. Rucci M. Visual encoding with jittering eyes. In Y. Weiss, B. Scholkopf, J. Platt (Eds.). Advances in neural information processing system. 2006. V. 18. Р. 1137–1144.
- 49. Rucci M., Poletti M. Control and function of fixational eye movements. Annu. Rev. Vis. Sci. 2015. V. 1. Р. 499–518. https://doi.org/10.1146/annurev-vision-082114-035742
- 50. Tulunay-Keesey U. Effects of involuntary eye movements on visual acuity. J. Opt. Soc. Am. 1960. V. 50. Р. 769–774. https://doi.org/10.1364/JOSA.50.000769
- 51. Tulunay-Keesey U. Fading of stabilized retinal images. J. Opt. Soc. Am. 1982. V. 72. Р. 440–447. https://doi.org/10.1364/JOSA.72.000440
- 52. Wade N. How Were Eye Movements Recorded Before Yarbus? Perception. 2015. V. 44(8-9). Р. 851–883. https://doi.org/10.1177/0301006615594947
- 53. Wade N. J. Why do patterned afterimages fluctuate in visibility? Psychological Bulletin. 1978. V. 85(2). Р. 338–352. https://doi.org/10.1037/0033-2909.85.2.338
- 54. Westheimer G. The spatial sense of the eye. Proctor lecture. Invest. Ophthalmol. Vis. Sci. 1979. V. 18. Р. 893–912.
- 55. Whitham E. M, Fitzgibbon S. P, Lewis T. W, Pope K. J, Delosangeles D. et al. Visual experiences during paralysis. Front. Hum. Neurosci. 2011. V. 5. № 160. Р. 1–7. https://doi.org/10.3389/fnhum.2011.00160
- 56. Winterson B. J., Collewijn H. Microsaccades during finely guided visuomotor tasks. Vision Res. 1976. V. 16. Р. 1387–1390. https://doi.org/10.1016/0042-6989 (76)90156-5
- 57. World Medical Association. Declaration of Helsinki ethical principles for medical research involving human subjects. JAMA. 2013. V. 310(20). P. 2191–2194. https://doi.org/10.1001/jama.2013.281053
- 58. Yarbus A. L. Eye movements and vision. New York: Plenum Press. 1967.