RAS PhysiologyСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

Perceived Trajectories of Cyclic Sound Movement

PII
10.31857/S0235009224030033-1
DOI
10.31857/S0235009224030033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 38 / Issue number 3
Pages
51-62
Abstract
Binaural beats are a phenomenon that occurs during dichotic stimulation due to binaural integration. It takes the form of cyclic movement of the sound image in the listener’s acoustic space when the beat frequency range is below 3 Hz. Our subjects used the inserted earphones to listen to the stimuli that created a sense of sound movement due to changes in the interaural time difference (ITD). We used three types of dichotic stimuli which simulated smooth azimuthal cyclic movement and cyclic abrupt shifts. The ITD changes determined central or lateral positions of movement trajectories. The results confirm that both types of movement created the effect of binaural beats. The range of beats depended on the spatial position of the trajectory: in the frontal sector of acoustic space, the range of beats was greater than on the left or right. The perceived trajectories of smooth motion were shorter than the trajectories of abrupt shift. The influence of spatial position on the perceived trajectory length is interpreted from the standpoint of nonlinear features of lateralization. It is suggested that the effect of ITD pattern on the perceived trajectory length is mediated by temporal integration mechanisms of binaural hearing.
Keywords
бинауральные биения пространственный слух бинауральная интеграция межушные различия по времени
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Альтман Я. А. Пространственный слух. СПб: Институт физиологии им. И.П. Павлова РАН, 2011. 311 с.
  2. 2. Андреева И. Г. Последействие движения как универсальное явление для сенсорных систем, участвующих в ориентации в пространстве. II. Слуховое последействие. Журнал эволюционной биохимии и физиологии. 2015. Т. 51. № 3. С. 145–153.
  3. 3. Блауэрт И. Пространственный слух. М.: Энергия, 1979. 225 с.
  4. 4. Петропавловская Е. А., Шестопалова Л. Б., Вайтулевич С. Ф. Предсказательная способность слуховой системы при плавном движении и скачкообразном перемещении звуковых образов малой длительности. Журнал ВНД. 2011. Т. 61. № 3. С. 293–305.
  5. 5. Саликова Д. А., Петропавловская Е. А., Шестопалова Л. Б. Искажение субъективного пространства в динамической акустической среде. Интегративная физиология. 2023. Т. 4. № 2. С. 198–212. DOI: 10.33910/2687-1270-2023-4-2-198-212
  6. 6. Шестопалова Л. Б., Саликова Д. А., Петропавловская Е. А. Слуховое последействие: влияние неподвижного адаптера на восприятие движущегося стимула. Журнал ВНД. 2023. Т. 73. № 2. С. 256–270. DOI: 10.31857/S0044467723020107
  7. 7. Barlow H. B. Vision: Coding and Efficiency. A theory about the functional role and synaptic mechanism of visual after-effects. New York. Ed. Cambridge University Press, 1990. Р. 363–375.
  8. 8. Akeroyd M. A. A binaural beat constructed from noise. J. Acoust. Soc. Am. 2010. V. 128. Р. 3301–3304. DOI: 10.1121/1.3505122
  9. 9. Barlow H. B., Hill R. M. Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature. 1963. V. 28. Р. 1345–1347. DOI: 10.1038/2001345a0
  10. 10. Basu S., Banerjee B. Potential of binaural beats intervention for improving memory and attention: insights from meta-analysis and systematic review. Psychol. Res. 2022. V. 87(4). Р. 951–963. DOI: 10.1007/s00426-022-01706-7
  11. 11. Bernstein L. R., Trahiotis C. Binaural beats at high frequencies: listeners’ use of envelope-based interaural temporal and intensity disparities. J. Acoust. Soc. Am. 1996. V. 99. Р. 1670–1679. DOI: 10.1121/1.414689
  12. 12. Bernstein L. R., Trahiotis C., Akeroyd M. A., Hartung K. Sensitivity to brief changes of interaural time and interaural intensity. J. Acoust. Soc. Am. V. 2001. V. 109. Р. 1604–1615. DOI: 10.1121/1.1354203
  13. 13. Blauert J. On the lag of lateralization caused by interaural time and intensity differences. Audiology. 1972. V. 11(5). Р. 265–270. DOI: 10.3109/00206097209072591
  14. 14. Carlile S., Leung J. The perception of auditory motion. Trends Hear. 2016. V. 20. Р. 1–19. DOI: 10.1177/2331216516644254
  15. 15. Carlile S., Hyams S., Delaney S. Systematic distortions of auditory space perception following prolonged exposure to broadband noise. J. Acoust. Soc. Am. 2001. V. 110. Р. 416–424. DOI: 10.1121/1.1375843
  16. 16. Clifford C. W., Wenderoth P., Spehar B. A functional angle on some after-effects in cortical vision. Proc. Biol. Sci. 2000. V. 267. Р. 1705–1710. DOI: 10.1098/rspb.2000.1198
  17. 17. Culling J. F., Summerfield Q. Measurements of the binaural temporal window using a detection task. J. Acoust. Soc. Am. 1998. V. 103. Р. 3540–3553. DOI: 10.1121/1.423061
  18. 18. Dingle R. N., Hall S. E., Phillips D. P. The three-channel model of sound localization mechanisms: Interaural level differences. J. Acoust. Soc. Am. 2012. V. 131(5). Р. 4023–4029. DOI: 10.1121/1.3701877
  19. 19. Dingle R. N., Hall S. E., Phillips D. P. The three-channel model of sound localization mechanisms: Interaural time differences. J. Acoust. Soc. Am. 2013. V. 133(1). Р. 417–424. DOI: 10.1121/1.4768799
  20. 20. Garcia-Argibay M., Santed M. A., Reales J. M. Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis. Psychol. Res. 2019. V. 83(2). Р. 357–372. DOI:10.1007/s00426-018-1066-8
  21. 21. Getzmann S., Lewald J. The effect of spatial adaptation on auditory motion processing. Hear. Res. 2011. V. 272(1-2). Р. 21–29. DOI: 10.1016/j.heares.2010.11.005
  22. 22. Getzmann S., Lewald J. Cortical processing of change in sound location: smooth motion versus discontinuous displacement. Brain Res. 2012. V. 1466. Р. 119–127. DOI: 10.1016/j.brainres.2012.05.033
  23. 23. Grantham D. W. Detectability of time-varying interaural correlation in narrow-band noise stimuli. J. Acoust. Soc. Am. 1982. V. 72(4). Р. 1178-1184. DOI: 10.1121/1.388326
  24. 24. Grantham D. W. Discrimination of dynamic interaural intensity differences. J. Acoust. Soc. Am. 1984. V. 76(1). Р. 71-76. DOI:10.1121/1.391009
  25. 25. Grantham D. W., Wightman F. L. Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 1978. V. 63(2). Р. 511–523. DOI: 10.1121/1.381751
  26. 26. Gutschalk A., Micheyl C., Oxenham A. J. The pulse-train auditory aftereffect and the perception of rapid amplitude modulations. J. Acoust. Soc. Am. 2008. V. 123(2). Р. 935–945. DOI: 10.1121/1.2828057
  27. 27. Kollmeier B., Gilkey R. H. Binaural forward and backward masking: evidence for sluggishness in binaural detection. J. Acoust. Soc. Am. 1990. V. 87. Р. 1709–1719. DOI: 10.1121/1.399419
  28. 28. Licklider J. C.R., Webster J. C., Hedlun J. M. On the frequency limits of binaural beats. J. Acoust. Soc. Am. 1950. V. 22. 468–473. DOI: 10.1121/1.1906629
  29. 29. Maffei L., Fiorentini A., Bisti S. Neural correlates of perceptual adaptation to gratings. Science. 1973. V. 182. Р. 1036–1038. DOI: 10.1126/science.182.4116.1036
  30. 30. McFadden D., Pasanen E. G. Binaural beats at high frequencies. Science. 1975. V. 190(4212). Р. 394–396. DOI: 10.1126/science.1179219
  31. 31. Mills A. W. Lateralization of high-frequency tones. JASA. 1960. V. 32. Р. 132–134
  32. 32. Movshon J. A., Lennie P. Pattern-selective adaptation in visual cortical neurons. Nature. 1979. V. 278. Р. 850–852. DOI: 10.1038/278850a0
  33. 33. Perrott D. R., & Musicant A. D. Rotating tones and binaural beats. J. Acoust. Soc. Am. 1977. V. 61(5). Р. 1288–1292. DOI: 10.1121/1.381430
  34. 34. Perrott D. R., Nelson M. A. Limits for the detection of binaural beats. J. Acoust. Soc. Am. 1969. V. 46(6). Р. 1477–1481. DOI: 10.1121/1.1911890
  35. 35. Saberi K. Lateralization of comodulated complex waveforms. J. Acoust. Soc. Am. 1995. V. 98. Р. 3146–3156. DOI: 10.1121/1.413804
  36. 36. Salminen N. H., Tiitinen H., May P. J. Auditory spatial processing in the human cortex. The Neuroscientist. 2012. V. 18(6). Р. 602–612. doi:10.1177/1073858411434209
  37. 37. Shestopalova L., Petropavlovskaia E., Semenova V., Nikitin N. Brain oscillations evoked by sound motion. Brain Res. 2021. V. 1752. p. 147232. DOI: 10.1016/j.brainres.2020.147232
  38. 38. Shestopalova L., Petropavlovskaia E., Vaitulevich S., Vasilenko Yu., Nikitin N., Altman J. Discrimination of auditory motion patterns: mismatch negativity study. Neuropsychologia. 2012 V. 50. Р. 2720–2729. DOI: 10.1016/j.neuropsychologia.2012.07.043
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library