- PII
- 10.31857/S0235009223030058-1
- DOI
- 10.31857/S0235009223030058
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 37 / Issue number 3
- Pages
- 258-268
- Abstract
- The inertial mass in the balance organ-statocyst of Pomacea diffusa was studied from the moment of hatching from eggs until the end of the life cycle, as well as the effects of weightlessness on the inertial mass during a 14-day orbital flight on the biosatellite “Bion-11”. As the snails grew older, the diameter of the statocyst increased from 150 μm to 650 μm, and the inertial mass contained in it increased from 11–13 statoconia to 700 statoconia. The internal structure of the statoconia had a layered structure with a nucleus in its central region. The main mineral element that gives statoconia heaviness is calcium carbonate, presented in the form of aragonite crystals. A 14-day exposure in weightlessness led to noticeable changes in the morphometric pattern of the inertial mass in the statocyst of flight snails in comparison with the control snails of synchronous tracking. In most of the statoconia, the form factor, length, and width indicators increased, which could indicate the stimulating effect of weightlessness on the inertial mass in the balance organ of Pomacea diffusa.
- Keywords
- улитка статоцист статоконии невесомость биоспутник “Бион-11”
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Винников Я.А., Газенко О.Г., Титова Л.К. Рецептор гравитации. Серия “Проблемы космической биологии”. Т. XII. Л.: “Наука”, 1971. 523 с.
- 2. Горгиладзе Г.И. Стимулирующее влияние невесомости на рост статоконий (эксперименты на автоматических космических аппаратах “Фотон” и “Ресурс-Ф” и пилотируемом орбитальном комплексе “Мир”). Georgian Engineering News. 2001. № 4. С. 113–119.
- 3. Горгиладзе Г.И. Структурно-функциональные особенности статоциста улиток Helix lucorum. Орбитальная станция “Мир”. Медико-биологические эксперименты. 2002. Т. 2. С. 366–383.
- 4. Горгиладзе Г.И. Пластичность инерциальной массы в органе равновесия в изменяющемся гравитационном поле. Сенсорные системы. 2020. Т. 34. № 4. С. 267–282.
- 5. Горгиладзе Г.И., Носовский А.М., Букия Р.Д. Статолит Pomatias rivulare. Сенсорные системы. 2013. Т. 27. № 3. С. 216–223.
- 6. Geuze J.J. Observations on the function and the structure of the statocysts of Lymnae stagnalis. Netherl. J. Zool. 1968. V. 18. № 2. P. 155–204.
- 7. Ghesquiere S. Apple snail. 2007. (Stijn Ghesquiere. http://www.applesnail.net).
- 8. Pedrozo H.A., Schwartz Z., Luther M. A mechanism of adaptation to hypergravity in the statocyst of Aplysia californica. Hear. Res. 1996. V. 102. № 1–2. P. 51–62.
- 9. Pedrozo H.A., Wiederhold M.L. Effects of hypergravity on statocyst development in embryonic Aplysia californica. Hear. Res. 1994. V. 79. P. 137–146.
- 10. Wiederhold M.L., Harrison J.L., Ortiz C.A. Enhanced production of the “test mass” in the statocyst of pond snails reared in microgravity. Proc. Fifteenth Space Utilization Res. Sympos. Tokyo. 1999. V. 15. P. 89–92.
- 11. Wiederhold M.L., Harrison J.L., Parker K.A., Nomura H. Otoliths developed in microgravity. J. Grav. Physiol. 2000. V. 7. № 2. P. 39–42.
- 12. Wiederhold M.L., Pedrozo H.A., Harrison J.L. et al. Development of gravity-sensing organs in altered gravity conditions: opposite conclusions from an amphibian and a molluscan preparation. J. Grav. Physiol. 1997. V. 4. № 2. P. 51–54.