RAS PhysiologyСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

On the role of the auditory critical bands in effects of stimulus-specific adaptation in the activity of primary auditory cortex neurons in awake mice

PII
S0235009225010056-1
DOI
10.31857/S0235009225010056
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 39 / Issue number 1
Pages
48-55
Abstract
The neurophysiological effects of stimulus-specific adaptation in the single neurons’ activity in the primary fields of the awake house mice auditory cortex were firstly studied. While adaptation of neuronal responses to sound sequences consisting of four identical tones, the time intervals between which were selected so as to be similar to the temporal structure of series of mouse pups wriggling call, adult females were stimulated by a fifth tone signal, the frequency of which differed from the frequency of the first four tone pulses in the series. The presentation of deviant tone led to a complete or partial neuronal responses recovery from adaptation in responses to the fifth component of the sequence, i.e. the response to the fifth tone was stronger than ones to the 2nd – 4th signals. Localization of the frequencies of main tonal sequence components and of the deviant one in two different non-overlapping critical bands of mouse hearing was followed by the most prominent effect of release from stimulus-specific adaptation. Thus, the critical band mechanism is involved in facilitating of the novelty responses of auditory neurons in the midbrain and auditory cortex.
Keywords
слух первичная слуховая кора бодрствующие мыши стимул-специфическая слуховая адаптация критические полосы слуха
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Акимов А. Г. Кодирование моделей крика дискомфорта мышат популяцией нейронов центрального ядра заднего холма среднего мозга домовой мыши (Mus musculus). Журн. эвол. биохим. физиол. 2013. Т. 49. № 3. С. 233-236.
  2. 2. Вартанян И.А., Егорова М.А. Феномен критических полос. Биофизика сенсорных систем. Учебное пособие. Под ред. Самойлова В.О. СПб. Изд-во Политехнич. Ун-та. 2007. С. 165–186.
  3. 3. Вартанян И.А., Егорова М.А., Эрет Г. Проявление основных свойств критических полос в нейрональной активности задних холмов мыши. Докл. Акад. наук. 1999. Т. 368. № 2. С. 270–272.
  4. 4. Егорова М. А., Вартанян И. А., Эрет Г. Нейрофизиологические предпосылки слуховых критических полос на уровне среднего мозга. Сенсорные системы. 2002. Т. 16. С. 3–12.
  5. 5. Егорова М.А., Акимов А.Г., Хорунжий Г.Д. Проявления стимул-специфической адаптации в реакциях нейронов первичной слуховой коры бодрствующих мышей на модели последовательностей крика дискомфорта мышат. Интегративная физиология. 2024. Т. 5. № 3. DOI: 10.33910/2687-1270-2024-5-3-**-**
  6. 6. Малинина Е. С., Егорова М. А., Акимов А. Г. Нейрофизиологические подходы к исследованию функциональной роли критических полос слуха. Журнал эволюционной биохимии и физиологии. 2015. Т. 51. № 5. С. 352–361.
  7. 7. Малинина Е.С., Егорова М.А., Хорунжий Г.Д., Акимов А.Г. Временная шкала адаптации при обработке звуковых последовательностей нейронами слухового центра среднего мозга мышей. Докл. Акад. Наук. 2016. Т. 470. № 1. С. 112–116. DOI: 10.7868/S0869565216250265
  8. 8. Хорунжий Г. Д., Егорова М. А. Нейрофизиологические предпосылки временного анализа звука нейронами слухового центра среднего мозга мыши (Mus musculus). Росс. физиол. журн. им. И.М. Сеченова. 2023. Т. 109. 3. С. 283–299. DOI: 10.31857/S0869813923030032
  9. 9. Egorova M.A. Frequency selectivity of neurons of the primary auditory field (A1) and anterior auditory field (AAF) in the auditory cortex of the house mouse (Mus musculus). J. Evol. Biochem. Physiol. 2005. V 41(4). P. 476–480.
  10. 10. Egorova M., Ehret G. Tonotopy and inhibition in the midbrain inferior colliculus shape spectral resolution of sounds in neural critical bands. Europ. J. Neurosci. 2008. V. 28(4). P. 675–692. DOI:10.1111/j.1460-9568.2008.06376.x
  11. 11. Egorova M.A., Akimov A.G. Khorunzhii G.D. Time Scale of Adaptation at the Tonal Sequence Processing in the Awake Mice Auditory Cortex Neurons. J. Evol. Biochem. Physiol. 2024. V. 60. P. 332–341 DOI: 10.1134/S0022093024010241
  12. 12. Ehret G. Hearing in the mouse. The Comparative Psychology of Audition: Perceiving Complex Sounds. Eds: Dooling R.J., Hulse S.H. 1989. New York, NY. Lawrence Erlbaum. P. 3–32.
  13. 13. Ehret G. Preadaptations in the auditory system of mammals for phoneme perception. The Auditory Processing of Speech. From Sounds to Words. Berlin: de Gruyter. 1992. P. 99—112.
  14. 14. Ehret G., Riecke S. Mice and humans perceive multiharmonic communication sounds in the same way. Proceedings of the National Academy of Sciences. – 2002. V. 99(1). P. 479–482. DOI: 10.1073/pnas.012361999
  15. 15. Ehret G., Schreiner C. Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex. J. Comp. Physiol. A. 1997. V. 181. P. 635–650. DOI: 10.1007/s003590050146
  16. 16. Fletcher H. Auditory patterns. Reviews of modern physics. 1940. V. 12(1). P. 47.
  17. 17. Gaub S., Ehret G. Grouping in auditory temporal perception and vocal production is mutually adapted: the case of wriggling calls of mice. J. Comp. Physiol. A. 2005. V. 191. P. 1131–1135. DOI: 10.1007/s00359-005-0036-y
  18. 18. Moore B.C.J. An Introduction to the Psychology of Hearing. London: Academic press. 1982.
  19. 19. Scharf B. Critical bands. Foundations of modern auditory theory, volume I. Edr Tobias J.V. 1970. New York: Academic Press. P. 159–202.
  20. 20. Sidman R.L., Angevine J.B., Pierce E.T. Atlas of the mouse brain and spinal cord. 1971. Boston: Harvard University Press.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library