В работе рассматривается задача классификации сельскохозяйственных культур. Как известно, для решения этой задачи значительно эффективнее использовать не только мгновенные данные дистанционного зондирования или вычисленные по ним вегетационные индексы, но и их исторический набор для разных моментов времени. Временные ряды, образованные значениями индексов для фиксированной пространственной точки для разных моментов времени, характеризуются высоким уровнем пропусков значений, вызванных в первую очередь наличием облачности в некоторые даты. Проведено исследование известных методов аппроксимации временных рядов. Также исследуется вопрос о том, может ли снижение размерности аппроксимированных временных рядов повысить качество рассматриваемой классификации. В экспериментальной части работы использовались временные ряды индекса NDVI, вычисленного по мультиспектральным спутниковым данным Sentinel-2. Исследовалась классификация кукурузы, подсолнечника, пшеницы и сои. В работе показано, что снижение размерности методом UMAP позволяет в среднем в 1.5 раза повысить значение F1-меры в сравнении с использованием данных исходной размерности. Предложен новый метод классификации культур, основанный на аппроксимации временных рядов вегетационных индексов NDVI кубическим сплайном, извлечение малоразмерных признаков алгоритмом UMAP и их классификации методом k ближайших соседей.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации