RAS PhysiologyСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

Changes in the visual areas of the cerebral cortex in children with left-sided anisometropic amblyopia according to structural MRI and resting-state fMRI

PII
10.31857/S0235009224010027-1
DOI
10.31857/S0235009224010027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 38 / Issue number 1
Pages
30-44
Abstract
Thanks to the development of structural and functional magnetic resonance imaging (MRI) methods, in recent decades there has been a lot of research aimed at elucidating brain abnormalities caused by amblyopia. In the cases of this prevalent visual disorder, the anomalies causing decreased visual acuity and other visual disabilities cannot be determined by standard ophthalmologic examination. Since there are several types of this disorder that are fundamentally different in etiology, it is natural to suggest the presence of different types of corresponding brain abnormalities. In this regard, before obtaining a general picture of the pathogenesis of amblyopia, studies conducted on groups of specially selected similar patients are very important. This paper presents the results of a study of school-age children with left-sided anisometropic amblyopia. In the patients investigated, MRI data revealed interhemispheric differences in the thickness of the lateral occipital cortex, and resting-state fMRI revealed interhemispheric differences in the local coherence of the hemodynamic signal within 17 Brodmann area and in the functional connectivity between 17 and 18+19 Brodmann areas. The data obtained contribute to the creation of a general MRI database on the pathophysiology of amblyopia, help clarify some controversial issues and indicate the advisability of using resting-state fMRI in ophthalmology.
Keywords
зрительная система анизометропическая амблиопия МРТ фМРТ покоя межполушарные различия
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Алексеенко С. В., Шкорбатова П. Ю. Депривационная и дисбинокулярная амблиопия: нарушения в геникуло-корковых зрительных путях. Альманах клинической медицины. 2015. № 36. С. 97—100.
  2. 2. Алексеенко С. В., Шкорбатова П. Ю. Динамика развития аномалий в подкорковом зрительном центре головного мозга при раннем нарушении бинокулярного опыта. Альманах клинической медицины. 2016. Т. 44. № 3. С. 351—357.
  3. 3. Кононова Н. Е., Сомов Е. Е. Амблиопия и связанные с ней проблемы. Педиатр. 2018. Т. 9. № 1. С. 29—36.
  4. 4. Лебедева И. С., Хаценко И. Е., Стуров Н. В., Гусева М. Р., Лобанова И. В., Выхристюк О. Ф., Кюн Ю. А., Томышев А. С. Структурные особенности головного мозга ребенка при односторонней амблиопии: МРТ-исследование. Журнал неврологии и психиатрии им С. С. Корсакова. 2018. № 2. С. 69—74. https://doi.org/10.17116/jnevro20181185269
  5. 5. Матросова Ю. В. Этиопатогенез, клиника и методы лечения больных с амблиопей. Вестник НГУ. Серия: Биология, клиническая медицина. 2012. Т. 10. № 3. С. 193—202.
  6. 6. Нероев В. В., Зуева М. В., Маглакелидзе Н. М. Патофизиология амблиопии: латеральное коленчатое тело и зрительная кора. Российский Офтальмологический журнал. 2015. № 1. С. 81—89.
  7. 7. Сомов Е. Е., Кононова Н. Е. К вопросу об амблиопии, ее закономерностях и лечении. Российская детская офтальмология. 2021. № 2. С. 15—21.
  8. 8. Хаценко И. Е., Рожкова Г. И., Грачева М. А. Патогенез и описания амблиопии. Часть 1. Причины эволюции представлений. Российская детская офтальмология. 2023a. № 3. С. 37—47. https://doi.org/10.25276/2307—6658—2023—3—37—47
  9. 9. Хаценко И. Е., Рожкова Г. И., Грачёва М. А. Патогенез и описания амблиопии. Часть 2. Анализ определений. Российская детская офтальмология. 2023b. № 3. С. 48—54. https://doi.org/10.25276/2307—6658—2023—3—48—54
  10. 10. Barnes G. R., Hess R. F., Dumoulin S. O., Achtman R. L., Pike G. B. The cortical deficit in humans with strabismic amblyopia. J. Physiol (Lond.). 2001. V. 533. P. 281—297.
  11. 11. Barnes G. R., Li X., Thompson B., Singh K. D., Dumoulin S. O., Hess R. F. Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci. 2010. V. 51(3). P. 1432—1438. https://doi.org/10.1167/iovs.09—3931
  12. 12. Birch E. E. Amblyopia and binocular vision. Prog. Retin. Eye Res. 2013. No. 33. P. 67—84. doi: 10.1016/j.preteyeres.2012.11.001. Epub. 2012. Nov 29. PMID: 23201436; PMCID: PMC3577063
  13. 13. Brown H. D.H., Woodall R. E., Ritching R. E., Baseler H. F., Morland A. B. Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic and Physiological Optics. 2016. V. 36. P. 240—265. https://doi.org/10.1111/opo.12293
  14. 14. Dale A. M., Fischl B., Sereno M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999. V. 9(2). P. 179—194. https://doi.org/ 10.1006/nimg.1998.0395
  15. 15. Dai P., Zhang J., Wu J., Chen Z., Zou B., Wu Y., Wei X., Xiao M. Altered spontaneous brain activity of children with unilateral amblyopia: A resting state fMRI study. Neural Plasticity. 2019. V. 2019. P. 1—10. https://doi.org/10.1155/2019/3681430
  16. 16. Desikan R. S., Segonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., Buckner R. L., Dale A. M., Maguire R. P., Hyman B. T., Albert M. S., Killiany R. J. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyrally based regions of interest. Neuroimage. 2006. V. 31(3). P. 968—980. https://doi.org/10.1016/j.neuroimage.2006.01.021
  17. 17. Du H., Xie B., Yu Q., Wang J. Occipital lobe’s cortical thinning in ametropic amblyopia. Magn Reson Imaging. 2009. V. 27(5). P. 637—640.
  18. 18. Fischl B., Sereno M. I., Dale A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999. V. 9(2). P. 195—207. https://doi.org/10.1006/nimg.1998.0396
  19. 19. Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., van der Kouwe A., Killiany R., Kennedy D., Klaveness S., Montillo A., Makris N., Rosen B., Dale A. M. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002. V. 33(3). P. 341—355. https://doi.org/10.1016/s0896—6273 (02)00569-x
  20. 20. Fischl B., Rajendran N., Busa E., Augustinack J., Hinds O., Yeo B. T., Mohlberg H., Amunts K., Zilles K. Cortical folding patterns and predicting cytoarchitecture. Cereb. Cortex. 2008. V. 18(8). P. 1973—1980. https://doi.org/10.1093/cercor/bhm225
  21. 21. Hess R. F., Thompson B., Gole G., Mullen K. T. Deficient response from the lateral geniculate nucleus in humans with amblyopia. The European Journal of Neuroscience. 2009. V. 29(5). P. 1064—1070. https://doi.org/10.1111/j.1460—9568.2009.06650.x
  22. 22. Hess R. F. The contrast dependence of the cortical fMRI deficit in amblyopia: a selective loss at higher contrasts. Hum. Brain Mapp. 2010. V. 31(8). P. 1233—1248. https://doi.org/doi: 10.1002/hbm.20931
  23. 23. Hinds O. P., Rajendran N., Polimeni J. R., Augustinack J. C., Wiggins G., Wald L. L., Diana Rosas H., Potthast A., Schwartz E. L., Fischl B. Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage. 2008. V. 15. No. 39(4). P. 1585—1599. https://doi.org/10.1016/j.neuroimage.2007.10.033
  24. 24. Joly O., Franko E. Neuroimaging of amblyopia and binocular vision: a review. Frontiers in Integrative Neuroscience. 2014. V. 8. P. 1—10. https://doi.org/10.3389/fnint.2014.00062
  25. 25. Levi D. M. Rethinking amblyopia 2020. Vision Res. 2020. V. 176. P. 118—129. https://doi.org/10.1016/j.visres.2020.07.014
  26. 26. Liang M., Xiao H., Xie B., Yin X., Wang J., Yang H. Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study. BMC Neurosci. 2019. V. 20. P. 1—7. https:// doi.org/10.1186/ s12868—019—0524—6
  27. 27. Lin X., Ding K., Liu Y., Yan X., Song S., Jiang T. Altered spontaneous activity in anisometropic amblyopia subjects revealed by resting-state FMRI. PLoS One. 2012. V. 7. Article e43373. https://doi. org/10.1371/journal.pone.0043373
  28. 28. Liang M., Xie B., Yang H. Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a resting-state fMRI study. Graefes Arch Clin Exp Ophthalmol. 2016. V. 254. P. 569—576 https://doi.org/10.1007/s00417—015—3117—9
  29. 29. Lv B., He H., Li X., Zhang Z., Huang W., Li M., Lu G. Structural and functional deficits in human amblyopia. Neurosci Lett. 2008. V. 437(1). P. 5—9.
  30. 30. Mendola J. D., Ian P. Conner I. P., Roy A., Chan S. — T., Schwartz T. L., Odom J. V., Kenneth K., Kwong K. K. Voxel-Based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Human Brain Mapping. 2005. V. 25(2). P. 222—236. https://doi.org/10.1002/hbm.20109
  31. 31. Mendola J. D., Lam J., Rosenstein M., Lewis L. B., Shmuel A. Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. Neuroimage Clin. 2018. V. 18. P. 192—201. https://doi.org/10.1016/j.nicl.2018.01.022
  32. 32. Miki A., Liu G. T., Goldsmith Z. G., Liu C. — S.J., Haselgrove J. C. Decreased activation of the lateral geniculate nucleus in a patient with anisometric amblyopia demonstrated by magnetic resonance imaging. Opththalmologia. 2003. V. 217(5). P. 365—369. https://doi.org/10.1159/000071353
  33. 33. Muckli I., Kiess S., Tonhausen W., Singer W., Goebel R., Sireteanu R. Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Res. 2006. V. 46(4). P. 506—526. https://doi.org/10.1016/j.visres.2005.10.014
  34. 34. Plessen K. J., Hugdahl K., Bansal R., Hao X., Peterson B. S. Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span. J. Neurosci. 2014. V. 30; 34(18). P. 6294—6302. https://doi.org/10.1523/JNEUROSCI.3692—13.2014
  35. 35. Peng J., Yao F., Li Q., Ge Q., Shi W., Su T., Tang L., Pan Y., Liang R., Zhang L., Shao Y. Alternations of interhemispheric functional connectivity in children with strabismus and amblyopia: a resting-state fMRI study. Scientifc Reports. 2021. V. 11. P. 15059. https://doi.org/10.1038/s41598—021—92281—1
  36. 36. Ségonne F., Dale A. M., Busa E., Glessner M., Salat D., Hahn H. K., Fischl B. A hybrid approach to the skull stripping problem in MRI. Neuroimage. 2004. V. 22(3). P. 1060—1075. https://doi.org /10.1016/j.neuroimage.2004.03.032. PMID: 15219578
  37. 37. Shaw P., Lalonde F., Lepage C., Rabin C., Eckstrand K., Sharp W., Greenstein D., Evans A., Giedd J. N., Rapoport J. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2009. V. 66(8). P. 888—896. https://doi.org/10.1001/archgenpsychiatry.2009.103
  38. 38. Spiegel D. P., Byblow W. D., Hess R. F., Thompson B. Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activity in individuals with amblyopia. Neurorehabilitation and Neural Repair. 2013. V. 27(8). P. 760—769. https://doi.org/10.1177/1545968313491006
  39. 39. Toosy A. T., Werring D. J., Plant G. T., Bullmore E. T., Miller D. H., Thompson A. J. Asymmetrical activation of human visual cortex demonstrated by functional MRI with monocular stimulation. Neuroimage. 2001. V. 14(3). P. 632—641. https://doi.org/10.1006/nimg.2001.0851
  40. 40. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002. V. 15(1). P. 273—289. https://doi.org/10.1006/nimg.2001.0978
  41. 41. Wang G., Liu L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2023. V. 261(5). P. 1229—1246. https://doi.org/10.1007/s00417—022—05826-z
  42. 42. Wang H., Crewther S. G., Liang M., Laycock R., Yu T., Alexander B. Impaired activation of visual attention network for motion salience is accompanied by reduced functional connectivity between frontal eye fields and visual cortex in strabismic amblyopes. Front. Hum. Neurosci. 2017. V. 11. P. 1—13. https://doi.org/10.3389/fnhum.2017.00195
  43. 43. Wang H., Liang M., Crewther S. G., Yin Z., Wang J., Crewther D. P., Yu T. Functional deficits and structural changes associated with visual attention network during resting state in adult strabismic and anisotropic amblyopes. Frontiers in Human Neuroscience. 2022. V. 16. P. 862703. https://doi.org/10.3389/fnhum.2022.862703
  44. 44. Xiao J. X., Xie S., Ye J. T., Liu H. H., Gan X. L., Gong G. L., Jiang X. X. Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. Am J. Ophthalmol. 2007. V. 143(3). P. 489—493. https://doi.org/10.1016/j.ajo.2006.11.039
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library