- PII
- 10.31857/S0235009223040078-1
- DOI
- 10.31857/S0235009223040078
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 37 / Issue number 4
- Pages
- 348-362
- Abstract
- The age-appropriate development of the central auditory system is crucial for a child’s normal auditory and speech development. If there are any issues with this development, it can lead to central auditory processing disorders (APD) and problems with psychoverbal and general development. Psychoacoustic testing is an informative and accessible diagnostic tool for identifying signs of APD. This testing can be performed on children as young as four years old, provided there are normative data available for different age groups. The purpose of this study was to assess the functional state of the central auditory system using psychoacoustic methods in healthy children of different ages. Materials & Methods. We examined 125 healthy full-term children between the ages of 4 and 17 years who had normal peripheral hearing and no speech, language, cognitive, or academic problems. The children were divided into five age groups: 4–5 years 11 months, 6–7 years 11 months, 8–9 years 11 months, 10–11 years 11 months, and 12 years and older. In addition to traditional audiological examinations, all children underwent tests to assess the functional state of the central parts of the auditory system, including tests for the perception of rhythmic sequences of stimuli, Random Gap Detection Test, monaural low redundant speech testing in quiet and in noise, alternating binaural speech testing, dichotic digits test, and a simplified version of the Russian matrix sentence test in noise (RUMatrix). The results showed that the tests used were sensitive to the functional state of various structures of the central auditory system, and signs of maturation in the “bottom-up” direction were demonstrated as the children grew older. The rate of evolutionary processes varied depending on the age group of the subjects. It was also shown that the morphofunctional development of the central auditory system is not completed by adolescence. Conclusion. These findings can be used to differentiate between the immaturity of the central auditory system, APD, and speech-language disorders of different types in children of different ages. Overall, this study emphasizes the importance of early detection and intervention for any issues related to the central auditory system in children.
- Keywords
- центральная слуховая обработка дети созревание слуховых центров центральные слуховые расстройства временной слуховой анализ речевые тесты
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Бобошко М.Ю., Калмыкова И.В., Гарбарук Е.С., Кибалова Ю.С., Савенко И.В. Современные аспекты детской речевой аудиометрии. Сенсорные системы. 2010. Т. 24 (4). С. 305–313.
- 2. Бобошко М.Ю. Речевая аудиометрия. Учебное пособие. СПб: Изд-во СПбГМУ, 2012. 64 с.
- 3. Бобошко М.Ю., Салахбеков М.А., Жилинская Е.В., Мальцева Н.В., Савенко И.В., Тотолян Н.А. Аудиологическая оценка состояния центральных отделов слуховой системы при рассеянном склерозе. Folia Otorhinolaryngol. et Pathologiae Respiratoriae. 2016. V. 22 (4). С. 56–67.
- 4. Бобошко М.Ю., Риехакайнен Е.И. Речевая аудиометрия в клинической практике. СПб.: Диалог, 2019. 80 с.
- 5. Бобошко М.Ю., Савенко И.В., Гарбарук Е.С., Журавский С.Г., Мальцева Н.В., Бердникова И.П. Практическая сурдология. СПб.: Диалог, 2021. 420 с.
- 6. Вайтулевич С.Ф., Петропавловская Е.А., Шестопалова Л.Б., Никитин Н.И. Функциональная межполушарная асимметрия мозга человека и слуховая функция. Физиология человека. 2019. Т. 45 (2). С. 103–114. https://doi.org/10.1134/S0131164619020127
- 7. Выготский Л.С. Мышление и речь. Изд. 5, испр. М.: Лабиринт, 1999. 352 с.
- 8. Гарбарук Е.С., Гойхбург М.В., Важибок А., Таварткиладзе Г.А., Павлов П.В., Кольмайер Б. Применение русскоязычной версии матриксного фразового теста у детей. Вестн. оториноларингологии. 2020. Т. 85 (1). С. 34–39. https://doi.org/10.17116/otorino20208501134
- 9. Ковязина М.С. Нейропсихологический анализ патологии мозолистого тела. 2-е изд. (эл.). М.: Генезис, 2016. 176 с.
- 10. Кукс Е.Н., Рындина А.М., Исмагулова Ф.Ш., Лапина В.М. Тест чередующейся речи в оценке центральных нарушений слуховой системы. Вестн. оториноларингологии. 1988. № 6. С. 10–13.
- 11. Лопотко А.И. Сенсибилизированная речевая аудиометрия. Пособие для врачей. СПб: СПбГМУ, 1999. 44 с.
- 12. Огородникова Е.А., Столярова Э.И., Балякова А.А. Особенности слухоречевой сегментации у детей школьного возраста с нормальным слухом и нарушениями слуха и речи. Сенсорные системы. 2012. Т. 26 (1). Р. 20–31.
- 13. Савенко И.В. Антенетальный онтогенез слуховой системы и ее дисфункция у детей, родившихся недоношенными (обзор литературы). Folia Otorhinolaryngol. et Pathologiae Respiratoriae. 2015. Т. 21 (4). С. 23–33.
- 14. Семенович А.В. Нейропсихологическая коррекция в детском возрасте. Метод замещающего онтогенеза. Учебное пособие. 9-е изд. (эл.). М.: Генезис, 2017. 474 с.
- 15. Чутко Л.С., Елецкая О.В. Речевые нарушения у детей. М., 2019. 448 с.
- 16. Bellis T.J. Assessment and management of central auditory processing disorders in the education: from science to practice. 2nd. ed. Clifton Park, NY: Thomson Delmar Learning, 2003. 552 p.
- 17. Bouyssi-Kobar M., Brossard-Racine M, Jacobs M., Murnick J., Chang T., Limperopoulos C. Regional microstructural organization of the cerebral cortex is affected by preterm birth. Neuroimage Clin. 2018. V. 18. P. 871–880. https://doi.org/10.1016/j.nicl.2018.03.020
- 18. Buss E., Porter H. L., Hall J.W., Grose, J.H. Gap detection in school-age children and adults: center frequency and ramp duration. Journal of Speech, Language, and Hearing Research. 2017. V. 60 (1). P. 172–181. https://doi.org/10.1044/2016_JSLHR-H-16-0010
- 19. Cone B., Whitaker R. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens. Int. J. Pediatr. Otorhinolaryngol. 2013. V. 77 (7). P. 1162–1173. https://doi.org/10.1016/j.ijporl.2013.04.030
- 20. Dias K.Z., Jutras B., Acrani I.O., Pereira L.D. Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age. Int. J. Pediatr. Otorhinolaryngol. 2012. V. 76 (2). P. 174–178. https://doi.org/10.1016/j.ijporl.2011.10.022
- 21. Dole M., Hoen M., Meunier F. Effect of contralateral noise on energetic and informational masking on speech-in-speech intelligibility. Proc. INTERSPEECH 2009, 10th Ann. Conf. Intern. Speech Communic. Assoc., Brighton, United Kingdom, September 6–10, 2009. https://doi.org/10.21437/Interspeech.2009-51
- 22. Eggermont J.J., Moore J.K. Morphological and functional development of the auditory nervous system. Human auditory development. Werner L.A., Fay R.R., Popper A.N., Eds. Springer Science+Business Media, LLC, 2012. 284 p.
- 23. Firszt J.B., Ulmer J.L., Gaggl W. Differential representation of speech sounds in the human cerebral hemispheres. Anat. Rec. A Discov Mol. Cell Evol. Biol. 2006. V. 288 (4). P. 345–357. https://doi.org/10.1002/ar.a.20295
- 24. Graven S.N., Browne J.V. Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. 2008. V. 8 (4). P. 187–193. https://doi.org/10.1053/j.nainr.2008.10.010
- 25. Güntürkün O., Ströckens F., Ocklenburg S. Brain lateralization: a comparative perspective. Physiol. Rev. 2020. V. 100 (3). P. 1019–1063. https://doi.org/10.1152/physrev.00006.2019
- 26. Gutschalk A., Steinmann I. Stimulus dependence of contralateral dominance in human auditory cortex. Hum. Brain Mapp. 2015. V. 36 (3). P. 883–896. https://doi.org/10.1002/hbm.22673
- 27. Hugdahl K., Westerhausen R., Alho K., Medvedev S., Hämäläinen H. The effect of stimulus intensity on the right ear advantage in dichotic listening. Neurosci. Lett. 2008. V. 431 (1). P. 90–94. https://doi.org/10.1016/j.neulet.2007.11.046
- 28. Inagaki M., Tomita Y., Takashima S., Ohtani K., Andoh G., Takeshita K. Functional and morphometrical maturation of the brainstem auditory pathway. Brain Dev. 1987. V. 9 (6). P. 597–601. https://doi.org/10.1016/s0387-7604 (87)80092-x
- 29. Isiklar S., Ozdemir S.T., Ozkaya G., Ozpar R. Three dimensional development and asymmetry of the corpus callosum in the 0–18 age group: A retrospective magnetic resonance imaging study. Clin Anat. 2023. V. 36 (4). P. 581–598. https://doi.org/10.1002/ca.23996
- 30. Kaga K. (Ed.). ABRs and electrically evoked ABRs in children (Part of the book series: Modern Otology and Neurotology). Tokyo: Springer Japan, 2022. 266 p. https://doi.org/10.1007/978-4-431-54189-9
- 31. Kawase T., Maki A., Kanno A., Nakasato N., Sato M., Kobayashi T. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields. Neuroimage. 2012. V. 59 (2). P. 1037–1042. https://doi.org/10.1016/j.neuroimage.2011.08.108
- 32. Keith R.W. Random Gap Detection Test, Auditec, St Louis (MO), 2002.
- 33. Kelly A. Normative data for behavioural tests of auditory processing for New Zealand school children aged 7 to 12 years. The Australian and New Zealand journal of audiology. 2007. V. 29 (1). P. 60–64. https://doi.org/10.1375/audi.29.1.60
- 34. Krizman J., Tierney A., Fitzroy A.B., Skoe E., Amar J., Kraus N. Continued maturation of auditory brainstem function during adolescence: A longitudinal approach. Clin. Neurophysiol. 2015. V. 126 (12). P. 2348–2355. https://doi.org/10.1016/j.clinph.2015.01.026
- 35. Lebel C., Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J. Neurosci. 2011. V. 31 (30). P. 10937–10947. https://doi.org/10.1523/JNEUROSCI.5302-10.2011
- 36. Lebel C., Deoni S. The development of brain white matter microstructure. Neuroimage. 2018. V. 182. P. 207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097
- 37. Lewandowska M., Milner R., Ganc M., Włodarczyk E., Dołżycka J., Skarżyński H. Development of central auditory processes in Polish children and adolescents at the age from 7 to 16 years. Current Psychology. 2023. V. 42 (5). P. 1789–1806. https://doi.org/10.1007/s12144-021-01540-x
- 38. Litovsky R. Development of the auditory system. Handbook of Clinical Neurology. The Human Auditory System. Eds G.G. Celesia and G. Hickok. 2015. P. 55–72. https://doi.org/10.1016/B978-0-444-62630-1.00003-2
- 39. Mattsson T.S., Follestad T., Andersson S., Lind O., Øygarden J., Nordgård S. Normative data for diagnosing auditory processing disorder in Norwegian children aged 7-12 years. Int. J. Audiol. 2018. V. 57 (1). P. 10–20. https://doi.org/10.1080/14992027.2017.1366670
- 40. McDermott E.E., Smart J.L., Boiano J.A., Bragg L.E., Colon T.N., Hanson E.M., Emanuel D.C., Kelly A.S. Assessing auditory processing abilities in typically developing school-aged children. J. Am. Acad. Audiol. 2016. V. 27 (2). P. 72–84. https://doi.org/10.3766/jaaa.14050
- 41. Moore J.K., Linthicum Jr. F.H. The human auditory system: A timeline of development. Int. J. Audiol. 2007. V. 46 (9). P. 460–478. https://doi.org/10.1080/14992020701383019
- 42. Musiek F.E. Auditory neuroscience and diagnosis. In: Musiek F.E., Chermak G.D. Handbook of central auditory processing disorder. 2nd ed V.1. San Diego: Plural Publishing, 2014. 745 p.
- 43. Musiek F.E., Chermak G.D. Psychophysical and behavioral peripheral and central auditory tests. In: Handbook of Clinical Neurology. The Human Auditory System. G.G. Celesia and G. Hickok (Eds). Elsevier B.V., 2015. P. 313–332. https://doi.org/10.1016/B978-0-444-62630-1.00018-4
- 44. Neijenhuis K., Snik A., Priester G., van Kordenoordt S., van den Broek P. Age effects and normative data on a Dutch test battery for auditory processing disorders. Int. J. Audiol. 2002. V. 41 (6). P. 334–346. https://doi.org/10.3109/14992020209090408
- 45. Ouyang M., Kang H., Detre J.A., Roberts T.P.L., Huang H. Short-range connections in the developmental connectome during typical and atypical brain maturation. Neurosci Biobehav. Rev. 2017. V. 83. P. 109–122. https://doi.org/10.1016/j.neubiorev.2017.10.007
- 46. Parviainen T., Helenius P., Salmelin R. Children show hemispheric differences in the basic auditory response properties. Hum. Brain Mapp. 2019. V. 40 (9). P. 2699–2710. https://doi.org/10.1002/hbm.24553
- 47. Quinones J.F., Pavan T., Liu X., Thiel C.M., Heep A., Hildebrandt A. Fiber tracing and microstructural characterization among audiovisual integration brain regions in neonates compared with young adults. Neuroimage. 2022. V. 254. Article No. 119141. https://doi.org/10.1016/j.neuroimage.2022.119141
- 48. Rahimi V., Mohamadkhani G., Alaghband-Rad J., Kermani F.R., Nikfarjad H., Marofizade S. Modulation of temporal resolution and speech long-latency auditory-evoked potentials by transcranial direct current stimulation in children and adolescents with dyslexia. Exp. Brain Res. 2019. V. 237 (3). P 873–882. https://doi.org/10.1007/s00221-019-05471-9
- 49. Scaioli V., Brinciotti M., Di Capua M., Lori S., Janes A., Pastorino G., Peruzzi C., Sergi P., Suppiej A. A multicentre database for normative brainstem auditory evoked potentials (BAEPs) in children: methodology for data collection and evaluation. Open Neurol. J. 2009. N. 3. P. 72–84. https://doi.org/10.2174/1874205X00903010072
- 50. Schochat E., Musiek F.E. Maturation of outcomes of behavioral and electrophysiologic tests of central auditory function. J. Commun. Disord. 2006. V. 39 (1). P. 78–92. https://doi.org/10.1016/j.jcomdis.2005.10.001
- 51. Sharma M., Purdy S.C., Humburg P. Cluster analyses reveals subgroups of children with suspected auditory processing disorders. Front. Psychol. 2019. V. 10. Article No. 2481. https://doi.org/10.3389/fpsyg.2019.02481
- 52. Sharma M., Purdy S.C., Kelly A.S. Comorbidity of auditory processing, language, and reading disorders. J. Speech Lang. Hear Res. 2009. V. 52 (3). P. 706–722. https://doi.org/10.1044/1092-4388 (2008/07-0226)
- 53. Skoe E., Krizman J., Anderson S., Kraus N. Stability and plasticity of auditory brainstem function across the lifespan. Cereb. Cortex. 2015. V. 25 (6). P. 1415–1426. https://doi.org/10.1093/cercor/bht311
- 54. Snowling M.J., Gooch D., McArthur G., Hulme C. Language skills, but not frequency discrimination, predict reading skills in children at risk of dyslexia. Psychol. Sci. 2018. V. 29 (8). P. 1270–1282. https://doi.org/10.1177/0956797618763090
- 55. Thomason M.E., Brown J.A., Dassanayake M.T., Shastri R., Marusak H.A., Hernandez-Andrade E., Yeo L., Mody S., Berman S., Hassan S.S., Romero R. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus. PLoS One. 2014. V. 9(5). Article No. e94423. https://doi.org/10.1371/journal.pone.0094423
- 56. Włodarczyk E.A., Szkiełkowska A., Skarżyński H., Miaśkiewicz B., Skarżyński P.H. Reference values for psychoacoustic tests on Polish school children 7–10 years old. PLoS One. 2019. V. 14 (8). Article No. e0221689. https://doi.org/10.1371/journal.pone.0221689
- 57. Yamazaki H., Easwar V., Polonenko M.J., Jiwani S., Wong D.D.E., Papsin B.C., Gordon K.A. Cortical hemispheric asymmetries are present at young ages and further develop into adolescence. Hum. Brain Mapp. 2018. V. 39 (2). P. 941–954. https://doi.org/10.1002/hbm.23893
- 58. Zwislocki J.J. A Theory of Central Auditory Masking and Its Partial Validation. J. Acoust. Soc. Am. 1972. V. 52 (2). P. 644–659. https://doi.org/10.1121/1.1913154