RAS PhysiologyСенсорные системы Sensory Systems

  • ISSN (Print) 0235-0092
  • ISSN (Online) 3034-5936

Classification of crops by NDVI time series of reduced dimensionality

PII
10.31857/S023500922302004X-1
DOI
10.31857/S023500922302004X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 37 / Issue number 2
Pages
171-180
Abstract
The paper considers the problem of classification of agricultural crops. As is known, to solve this problem, it is much more efficient to use not instantaneous remote sensing data or calculated vegetation indices, but their historical series. Time series formed by index values for a fixed spatial point at different dates are characterized by a high level of missing values, caused primarily by cloudiness on some dates. A study of known methods of time series approximation has been carried out. The question of whether reducing the dimensionality of the approximated time series can improve the quality of crops classification is also investigated. In the experimental part of the work, NDVI time series calculated from the Sentinel-2 multispectral satellite data were used. The classification of corn, sunflower, wheat and soybeans was studied. The paper shows that UMAP usage for dimensionality reduction leads to 1.5 times increase of classification quality in terms of average the F1-measure compared to using the original dimension data. A new crop classification method based on cubic spline approximation of NDVI time series, extraction of features of low dimension by the UMAP algorithm and their classification by the k nearest neighbors method is proposed.
Keywords
ДЗЗ классификация сельскохозяйственных культур временные ряды NDVI аппроксимация временного ряда извлечение признаков снижение размерности UMAP
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Барталев С.А., Лупян Е.А., Нейштадт И.А., Савин И.Ю. Классификация некоторых типов сельскохозяйственных посевов в южных регионах России по спутниковым данным MODIS. Исследование Земли из космоса. 2006. Т. 3. С. 68–75.
  2. 2. Бахтадзе Н.Н., Максимов Е.М., Максимова Н.Е., Дончан Д.М., Кузнецов Д.С., Захаров Э.А. Системы интеллектуального менеджмента для цифрового земледелия. Часть 1. Информационные технологии и вычислительные системы. 2020. Т. 2. С. 99–111. https://doi.org/10.14357/20718632200208
  3. 3. Блохина С.Ю. Применение дистанционного зондирования в точном земледелии. Вестник Российской сельскохозяйственной науки. 2018. № 5. С. 10–16. https://doi.org/10.30850/vrsn/2018/5/10-16
  4. 4. Бочаров Д.А., Николаев Д.П., Павлова М.А., Тимофеев В.А. Алгоритм детекции и компенсации теней от облаков на мультиспектральных спутниковых снимках для местностей сельскохозяйственных угодий. Информационные процессы. 2021. Т. 21. № 4. С. 295–312. https://doi.org/10.53921/18195822_2021_21_4_295
  5. 5. Воробьева Н.С., Чернов А.В. Аппроксимация временных рядов NDVI в задаче раннего распознавания видов сельскохозяйственных культур по космическим снимкам. Сборник трудов III международной конференции и молодежной школы “Информационные технологии и нанотехнологии” (ИТНТ-2017)-Самара: Новая техника. Самара. 2017. С. 390–399.
  6. 6. Павлова М.А., Сидорчук Д.С., Кущев Д.О., Бочаров Д.А., Николаев Д.П. Эквализация условий съемки на основе спектральных моделей для нужд точного земледелия с использованием БПЛА. Информационные процессы. 2022. Т. 22. № 4. С. 404–413. https://doi.org/10.53921/18195822_2022_22_4_404
  7. 7. Плотников Д.Е., Барталев С.А., Жарко В.О., Михайлов В.В., Просянникова О.И. Экспериментальная оценка распознаваемости агрокультур по данным сезонных спутниковых измерений спектральной яркости. Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. № 1. С. 199–208.
  8. 8. Пугачева И.Ю., Шевырногов А.П. Изучение динамики NDVI посевов сельскохозяйственных культур на территории Красноярского края и Республики Хакасия. Современные проблемы дистанционного зондирования Земли из космоса. 2008. Т. 5. № 2. С. 347–351.
  9. 9. Фирсов Н.А., Подлипнов В.В., Николаев П.П., Машков С.В., Ишкин П.А., Скиданов Р.В., Никоноров А.В. Нейросетевая классификация гиперспектральных изображений растительности с формированием обучающей выборки на основе адаптивного вегетационного индекса. Компьютерная оптика. 2021. Т. 45. №. 6. С. 887–896. https://doi.org/10.18287/2412-6179-CO-1038
  10. 10. Черепанов А.С., Дружинина Е.Г. Спектральные свойства растительности и вегетационные индексы. Геоматика. 2009. № 3. С. 28–32.
  11. 11. Якушев В.П., Дубенок Н.Н., Лупян Е.А. Опыт применения и перспективы развития технологий дистанционного зондирования Земли для сельского хозяйства. Современные проблемы дистанционного зондирования Земли из космоса. 2019. Т. 16. № 3. С. 11.
  12. 12. Abe B.T., Jordaan J.A. Hyperspectral image classification based on NMF Features Selection Method. Sixth International Conference on Machine Vision (ICMV 2013). SPIE, 2013. T. 9067. C. 114–119. https://doi.org/10.1117/12.2050072
  13. 13. Belda S., Pipia L., Morcillo-Pallarés P., Verrelst J. Optimizing gaussian process regression for image time series gap-filling and crop monitoring. Agronomy. 2020. T. 10. № 5. C. 618. https://doi.org/10.3390/agronomy10050618
  14. 14. Bouteldja S., Kourgli A. A comparative analysis of SVM, K-NN, and decision trees for high resolution satellite image scene classification. Twelfth International Conference on Machine Vision (ICMV 2019). SPIE, 2020. T. 11433. C. 410–416. https://doi.org/10.1117/12.2557563
  15. 15. Chakhar A., Hernández-López D., Ballesteros R., Moreno M.A. Improving the accuracy of multiple algorithms for crop classification by integrating sentinel-1 observations with sentinel-2 data. Remote Sensing. 2021. T. 13. № 2. C. 243. https://doi.org/10.3390/rs13020243
  16. 16. Gilbertson J.K., Van Niekerk A. Value of dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning. Computers and Electronics in Agriculture. 2017. T. 142. C. 50–58. https://doi.org/10.1016/j.compag.2017.08.024
  17. 17. Groten S.M.E. NDVI–crop monitoring and early yield assessment of Burkina Faso. International Journal of Remote Sensing. 1993. T. 14. № 8. C. 1495–1515. https://doi.org/10.1080/01431169308953983
  18. 18. Hird J.N., McDermid G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment. 2009. T. 113. № 1. C. 248–258. https://doi.org/10.1016/j.rse.2008.09.003
  19. 19. Li J., Shen Y., Yang C. An adversarial generative network for crop classification from remote sensing timeseries images. Remote Sensing. 2020. T. 13. № 1. C. 65. https://doi.org/10.3390/rs13010065
  20. 20. McInnes L., Healy J., Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. 2018. https://doi.org/10.48550/arXiv.1802.03426
  21. 21. Murmu S., Biswas S. Application of fuzzy logic and neural network in crop classification: a review. Aquatic Procedia. 2015. T. 4. C. 1203–1210. https://doi.org/10.1016/j.aqpro.2015.02.153
  22. 22. Orynbaikyzy A., Gessner U., Conrad C. Crop type classification using a combination of optical and radar remote sensing data: A review. International journal of remote sensing. 2019. T. 40. №. 17. C. 6553–6595. https://doi.org/10.1080/01431161.2019.1569791
  23. 23. Reedha R., Dericquebourg E., Canals R., Hafiane A. Transformer neural network for weed and crop classification of high resolution UAV images. Remote Sensing. 2022. T. 14. № 3. C. 592. https://doi.org/10.3390/rs14030592
  24. 24. Rußwurm M., Körner M. Self-attention for raw optical satellite time series classification. ISPRS journal of photogrammetry and remote sensing. 2020. T. 169. C. 421–435. https://doi.org/10.1016/j.isprsjprs.2020.06.006
  25. 25. Sishodia R.P., Ray R.L., Singh S.K. Applications of remote sensing in precision agriculture: A review. Remote Sensing. 2020. T. 12. № 19. C. 3136. https://doi.org/10.3390/rs12193136
  26. 26. Sun R., Chen S., Su H., Mi C., Jin N. The effect of NDVI time series density derived from spatiotemporal fusion of multisource remote sensing data on crop classification accuracy. ISPRS International Journal of Geo-Information. 2019. T. 8. № 11. C. 502. https://doi.org/10.3390/ijgi8110502
  27. 27. Velliangiri S., Alagumuthukrishnan S., Thankumar S.I. A review of dimensionality reduction techniques for efficient computation. Procedia Computer Science. 2019. T. 165. C. 104–111. https://doi.org/10.1016/j.procs.2020.01.079
  28. 28. Yang S., Gu L., Li X., Jiang T., Ren R. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote sensing. 2020. T. 12. № 19. C. 3119. https://doi.org/10.3390/rs12193119
  29. 29. Zhang S., Lei Y., Wang L., Li H., Zhao H. Crop classification using MODIS NDVI data denoised by wavelet: A case study in Hebei Plain, China. Chinese Geographical Science. 2011. T. 21. C. 322–333. https://doi.org/10.1007/s11769-011-0472-2
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library